Максимальный процент армирования колонны

Как осуществляется армирование колонн?

Колонны — железобетонные несущие конструкции, предназначенные для передачи нагрузок от вышестоящих конструкций на фундаменты либо стены.

Колонны используют на этажах, для монтажа на их капители или консоли вышестоящих перекрытий. В них также есть опора в виде подколонника.

Самый важный момент при строительстве колонн – расчет и устройство их армирования. О нем сейчас и поговорим.

1 Особенности и назначение

Армирование железобетонных колонн для конструкции фундамента и несущих стен необходимо сразу по нескольким причинам.

  1. Повысить прочность монолитной железобетонной конструкции.
  2. Улучшает взаимодействие разных частей колонн (основной опоры, капители, подколонника, консолей).
  3. Предотвращает появление трещин.
  4. Позволяет осуществлять ремонт железобетонных конструкций.
  5. Понижает шанс разрушения опоры со временем.
  6. Позволяет выливать крупные несущие опоры с сечением 300×300 и 400×400 мм без опасений за их судьбу в будущем.

Читайте также: какую сетку применяют для стяжки пола, и как правильно ее использовать?

Все это возможно благодаря работе арматурного каркаса. Использование арматуры для колонн железобетонных решает основную проблему бетона – его хрупкость.

Арматурный каркас колонны

Прелесть железобетонных конструкций фундамента и несущих опор заключается в их совместной работе. Бетон для фундамента отлично работает на сжатие, а арматура на изгиб. Поэтому схема их соединения позволяет создать универсальный тип строительных элементов.

Качественный арматурный каркас за счет своего взаимодействия с бетоном, защищает его от образования трещин, не дает ему разрушиться вследствие течения времени или наружных воздействий, к примеру, сейсмических смещений.

Да и вообще, строительство капитальных зданий, особенно промышленных, немыслимо без использования железобетонных конструкций фундамента и опор.
к меню ↑

1.1 Конструкция

Рассмотрим конструкцию железобетонных колонн, дабы понять в будущем, какая им нужно схема и чертеж.

Чертеж любой несущей опоры, передающей нагрузки на полость фундамента показывает, что состоит она из нескольких базовых частей. В частности схема предусматривает наличие:

  • основной несущей части;
  • капителей или консолей;
  • подколонника.

Чертеж основной части – удлиненный прямоугольник, минимальный размер сечения которого примерно равен 150×150 мм. Максимальный размер сечения не ограничивается и показателями в 500×500 мм, хотя последние разумно использовать только при взаимодействии с конструкциями плоского фундамента.

В верхней части колонн располагаются капители или консоли – это опоры под перекрытия. Капители являются выступами, на которые перекрытия можно монтировать. Такая схема упрощает работу строителям, позволяет сэкономить на материалах, в частности, существенно сократить использование балок.

Схематическое изображение колонн с консолью и капителью

Впрочем, капители с тем же успехом применяют в качестве основания под балки.

Что же до железобетонных элементов типа подколонника, то их схема являет собой образец обычной подошвы. Конструкция стандартного подколонника напоминает ступенчатое расширение под основой колонны. Задача подколонника – снять точечное напряжение и равномерно передать его на стены фундамента.

Использование подколонника необязательно, без него вполне можно обойтись, когда предусматривается монтаж ленточного или свайного фундамента. А вот для фундамента плиточного, наличие подколонника просто необходимо.
к меню ↑

1.2 Расчет

Прежде чем начать разбор армирования колонны, нужно внимательно осмотреть чертеж и провести расчет. Расчет – краеугольный камень всех подобных процессов. Расчет позволяет человеку четко определиться, что ему нужно, для чего и в каких количествах.

Стандартный расчет колоны предусматривает учет ее несущих нагрузок, типа фундамента, наличие или отсутствие дополнительных элементов (капители подколонника и т.д.) марка бетона и т.д.

После того как будет выполнен расчет, составляется чертеж и схема армирования. Чертеж показывает, сколько арматуры необходимо, какая это должна быть арматура, в каком порядке ее стоит вязать, какие дополнительные элементы использовать.

Выполняется расчет с помощью специальных формул. В них закладывается сопротивление материалов, соотношение уровня предельных нагрузок с желаемым и т.д.

Осуществляют расчет исключительно специалисты. Спроектировать армирование несущих опор человек без опыта не сможет. Не хватит знаний, и что важнее, опыта.
к меню ↑

1.3 Процент армирования

Для правильного армирования, как мы уже отметили, нужен качественный расчет и правильно составленный чертеж или схема.

Пример армирования каркасного здания на колоннах с двумя консолями

В расчет закладывается и такой показатель, как процент армирования или заполнения арматурой. Процент армирования указывает на удельный вес или долю арматурного каркаса в общей схеме конструкции.

Существует максимальный и минимальный процент армирования железобетонных опор. Минимальный процент – грань, ниже которой нельзя заходить. Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной.

Максимальный процент – предел, после которого конструкция из железобетонной превращается в сталежелезобетонную. Превышать максимальный процент тоже нежелательно, особенно в гражданском строительстве.

Показатель, минимального процента армирования колонны равняется 3%. Показатель максимального процента армирования равняется 6%. Однако расчет показывает, что для зданий небольших хватит и 5%, а в некоторых случаях и 4% в удельном весе.
к меню ↑

2 Технология, схема и материалы

Технология армирования довольно проста, так как заключает в себя всего несколько базовых рабочих этапов.

Нужно создать арматурный каркас поэтапно, связать его в единую конструкцию, при необходимости осуществить поперечное или косвенное армирование, а затем установить в опалубку. Основная задача строителей – связать правильный каркас. Схема действий здесь очень проста.

Берется несколько крупных круглых стержней с диаметром сечения от 20 мм. Как правило, это арматура круглых сортаментов, класса А3 или выше.

Стержни по длине должны полностью отвечать длине колонны, за вычетом 10-15 см на слой защитного бетона.

Минимальное количество стержней для рабочего каркаса – три. Что впрочем, вполне очевидно, ведь нам нужен не плоский, а объемный каркас.

Каркас колонны с поперечным укреплением

На практике используют от четырех до шести стержней в обычных колоннах и больше восьми в сильно нагруженных. Если колонна не квадратная, а вытянута в одном из направлений, то ее укрепляют дополнительной арматурой.

Продольную арматуру связывают между собой в нескольких местах. Однако обойтись только ею не удастся. При длине колонн от 2 метров, продольные изделия под давлением начнут выпячиваться, что не есть хорошо. Для предотвращения подобных проблем используют косвенное или поперечное укрепление каркаса.

Косвенное укрепление заключается в обвязке длинной арматуры поперечными короткими стержнями. Косвенное укрепление делается с интервалами. Желательно связать каркас поперечными элементами с интервалом в 20-50 см в зависимости от уровня несущих нагрузок.

Косвенное армирование – проверенный временем способ, очень удобный и простой. Без него сейчас создание несущих железобетонных колонн крайне нежелательно.
к меню ↑

2.1 Пример армирования колонн при строительстве (видео)

2.2 Армирование дополнительных элементов

Не стоит забывать о том, что конструкция дополнительных частей колонны, таких как капители, консоли и опорные конструкции подколонника тоже нуждаются в армировании.

При этом каркас для той же капители нужно еще и правильно интегрировать в целевую несущую конструкцию.

Образец капители – плоский выступ на верхнем конце колонны. Следовательно, для каркаса капители нужна арматурная сетка. Тут все достаточно просто. Берем арматуру толщиной от 15 мм, и вяжем из нее квадратную сетку с ячейками от 10×10 см.

Сетку интегрируем верхнюю часть каркаса путем подвязки проволокой. Как правило, хватает одноуровневой сетки. В крайнем случае, по ободу устраивают еще один стабилизирующий каркас, состоящий из одного-двух элементов.

Пример армирования подколонника сеткой

С консолями ситуация несколько иная. Консоль, в отличие от капители – это бетонный выступ на одном из краев колонн. Каркас для него являет собой двухуровневый выступ короткой арматуры, прикрепленный к одному из поперечных стержней.

Схема подколонника сильно напоминает аналогичную у монолитной капители, только подколонник делается толще, может иметь несколько ступенек и размещается на нижней части опоры.

Следовательно, каркас для него делается как минимум двухуровневый, из такой же сетки. В остальном отличий от чертежа каркаса для капители практически нет.

Если подколонник ступенчатый, то есть имеет несколько расширений с разными размерами, то сетку делают под каждую ступеньку и перевязывают проволокой. Чем больше ступеней, тем тоньше нужна арматура. На одну ступень берут арматуру толщиной в 15-20 мм, а на три хватит арматуры толщиной до 12 мм.

Статьи по теме:

Портал об арматуре » Армирование » Как осуществляется армирование колонн?

Обсуждение: есть 1 комментарий

Судя по всему статья писалась не конструктором. По всему разделу есть замечания, но в принципе ничего критичного. В общих словах суть передана верно.

Мне же хотелось бы заострить внимание на минимальном проценте армирования колонн.

«Если армирование железобетонных конструкций не покроет минимальный процент, то конструкция считается ненадежной и даже потенциально опасной»

Это не так. Конструкция просто не будет считаться железобетонной в таком случае, а бетонной. И рассчитываться будет соответствующе. А вот уже расчет покажет надежная она или нет. Может там только бетона и хватит.

«Показатель, минимального процента армирования колонны равняется 3%»

Это неверно. Согласно пункта 10.3.6 СП63 для внецентренно-сжатых элементов (коим является колонна) min процент армирования 0,25. При проценте больше 0,25% колонна считается железобетонной. При меньшем проценте бетонной.

«Показатель максимального процента армирования равняется 6%»

Максимальный процент согласно СП 10% в сечении с учетом нахлеста стержней. То есть в сечении без нахлеста, например, где-нибудь в середине колонны максимальный процент равен 10/2=5%.

Дальше по тексту рекомендации по анализу достаточности армирования тоже даны соответственно неверно. Я обычно руководствуюсь следующим алгоритмом:

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Как армировать колонны: схемы, нормы и правила

В монолитном строительстве, колоннами называют железобетонные вертикальные протяженные элементы, предназначенные для восприятия и передачи нагрузки от вышележащих конструкций. Для того чтобы они смогли обеспечить одноэтажным и многоэтажным сооружениям необходимый уровень жесткости и прочности, по вертикали, их усиливают арматурным каркасом. Разберем, как правильно и чем выполнить армирование колонны, чтобы она выдержала все будущие нагрузки на сжатие, скручивание и изгиб.

Читайте также  Армирование стяжки пола фиброволокном

Зачем армировать колонны?

Арматурный каркас увеличивает такие показатели бетонной колонны, как:

  • Прочность.
  • Сейсмостойкость.
  • Устойчивость к появлению трещин.
  • Долговечность.

На сколько, сильно увеличатся данные показатели, зависит от диаметра используемой арматуры и марки бетона. Так же армирование даёт возможность заливать колонны не только с простой формой поперечного сечения – квадратной и прямоугольной. Но и более сложной – двутавровой и круглой (сплошной и полой).

Материал для усиления колонн

Для армирования колонн используют арматуру следующих классов:

  1. В качестве рабочих продольных стержней применяют термомеханически упрочнённые стальные пруты периодического профиля класса А500С. Также допускается использование горячекатаных стержней класса А400.
  2. Для изготовления конструктивных элементов (хомутов, соединительных стержней), используется арматура с гладким профилем класса А240.

Технологические нормы по созданию армирующего каркаса

Для того чтобы правильно выполнить армирование монолитной колонны необходимо соблюдать следующие нормы по его устройству.

Диаметр арматуры

Минимальный диаметр стальных рабочих продольных стержней для сборных колонн должен быть равен не менее 16 мм. Для монолитных допускается применять арматуру диаметром 12 мм.

Рекомендуется, для создания армирующего каркаса колонны, использовать пруты одинаковой диаметра. Но допускается и применение двух разных, в этом случае стержни большего размера располагаются по углам колонны, а меньшего между ними по центру.

Минимальный и максимальный процент армирования колонны

Минимальный размер сечения арматуры для всех колонн разный. Определяется он расчетными действиями, учитываются все будущие нагрузки, которые будут действовать на колонну, временные, длительные и постоянные.

Максимальная площадь сечения рабочей продольной арматуры не рекомендуется делать более 5% площади поперечного сечения колонны. Так как в этом случае тяжело расположить стержни в пределах сечения.

Оптимальный процент армирования колонн находиться в пределах 0,4-3%. В местах стыковки это значение будет в 2 раза больше.

Пример расчета процента армирования колонны 400 на 400 мм, арматурой 16 диаметра – 4 шт.

  1. Находим площадь сечения колонны, 40*40=1600 см2.
  2. Считаем суммарную площадь поперечного сечения арматуры, 4*2,01=8,04 см2.
  3. Процент армирования равен, 8,04/(1600/100)=0,5025%.

Расположение продольных стержней

Максимально допустимое значение расстояния между осями продольных стержней не должно превышать 400 мм. Если расстояние более 400 мм, то следует между ними установить дополнительные стержни диаметром не менее 12 мм.

Рекомендуемое значение расстояния между стержнями в свету для сборных колонн рекомендуется делать не менее 30 мм, а для монолитных от 50 мм. В обоих случаях минимальное значение следует принимать не менее диаметра используемой арматуры.

Размер и расположение поперечных элементов

Размер поперечных стержней, зависит от наибольшего размера продольного прута в сечении колонны, а также от способа их соединения (вязка или сварка). Минимальный диаметр поперечных прутов указан в таблице ниже:

На размер шага расположения хомутов в колонне влияет класс арматуры, и ее показатели расчетного сопротивления сжатию Rас.

  • Для Rа.с. 2 – шаг не более 50 см, а так же не больше 20 диаметров используемого прута при соединение методом сварки, а при вязке не более 15d.
  • Для Rа.с. = 4500 кгс/см 2 и Rа.с. = 5000 кгс/см 2 – шаг не должен превышать 40 см. Для сварных каркасов не более 15 диаметров, а для вязаных 12. Для расчета берется размер наименьшего используемого продольного прута.

Если процент насыщения продольных стержней в колонне больше 3, то размер шага поперечной арматуры не должен превышать 30 см и не быть более 10 диаметров меньшего продольного элемента. Рекомендуется в данном случае хомуты крепить методом сварки.

Длина и правила стыковки прутов колонн

Длина арматуры для армирования монолитной железобетонной колонны берется такой, чтобы не было необходимости делать стык. Но если стык все же необходимо выполнить внахлест, без применения сварки, то лучшим вариантом расположения стыка будет в месте изменения сечения колонны. А для многоэтажных монолитных домов, лучший вариант расположения стыка, это уровень верха перекрытия.

Рекомендуемый размер нахлеста арматуры в колонне в сжатом состоянии, равен 30 диаметрам прута, при выполнении стыковки в разбежку. Но чаще всего стыковку выполняют без разбежки над перекрытием, в таком случае размер нахлеста рекомендуется делать в 2 раза больше, то есть 60 диаметров прута.

На схемах ниже приведены примеры выполнения стыковки продольной арматуры в монолитном домостроении.

Требования к защитному слою

Соблюдение требований по защитному слою бетона для арматуры колонны, одно из важнейших условий качественной железобетонной конструкции. Размер защитного слоя, зависит от диаметра арматуры и её назначения.

  • Для продольных стержней размер защитного слоя должен быть больше 20 мм, но не менее диаметра арматуры. Например: если для армирования используется пруты толщиной 28 мм, то соответственно минимальный защитный слой – 28 мм.
  • Для поперечного армирования колонны минимальный защитный слой бетона равен 15 мм, но так же, как и у продольного, не может быть менее диаметра стержня.

По моему опыту, чаще всего размер защитного слоя для колонн находится в пределах 3 – 4,5 см. Но если толщина защитного слоя, получилась более 50 мм в растянутой зоне сечения, то необходимо дополнительно устанавливать конструктивную арматуру в виде сеток.

Схемы армирующих каркасов

На схему расположения продольных и поперечных элементов армирования колонны (хомутов и соединительных стержней), влияет размер колонны, форма, количество арматуры используемых для её усиления, а также способ соединения элементов каркаса: при помощи сварки или вязальной проволоки.

Как видите при создании армирующего каркаса следует учесть немало факторов, для того чтобы получить качественную железобетонную колонну. Будьте внимательны и ответственно отнеситесь к процессу строительства и расчета. Если остались вопросы после изучения материала, задавайте их в комментариях.

Параметры подбора армирования ЖБК в Лира-Сапр

Хотел бы обсудить корректность составленных пояснений к выбору тех или иных параметров подбора армирования в Лира-Сапр по СП 63.13330.2012 . Бывает, что не всегда вспоминается, что именно нужно вписывать, чтобы расчет прошел корректно.

· Для колонн – колонна рядовая, либо колонна первого этажа;

· Для пилонов (при моделировании их стержнем) – пилон;

· Для балок – балка;

· Для плит – плита;

· Для стен (работающие больше как диафрагма жесткости) – стена растяжение/сжатие;

· Для стен (работающие также и на изгиб, например пилоны при их моделировании пластинами) – оболочка.

· Для колонн, пилонов – симметричное;

· Для балок – несимметричное, либо симметричное/несимметричное при необходимости (наличие знакопеременных нагрузок).

Выбрать согласно опыту. Если неизвестно – статически неопределимая.

Минимальный процент армирования определяется по пункту 10.3.6:

· для изгибаемых конструкций – 0.1%;

· для растянутых конструкций – 0.1%;

· для внецентренно-сжатых конструкций при гибкости ≤ 17 (для прямоугольных сечений ≤ 5) — 0.1%;

· для внецентренно-сжатых конструкций при гибкости 17 Расстояние до центра тяжести арматуры (привязка арматуры)

Определяется в соответствии с величиной защитного слоя а. Защитный слой подбирается согласно пункту 10.3.1-10.3.4 и таблице 10.1. Ориентировочно, центр тяжести арматуры можно принять:

· для плит и стен – а + 1.5 см;

· для балок и колонн – а + 2.5 см.

Ширина раскрытия трещин

Определяется в соответствии с пунктом 8.2.6. Для обычных конструкций промышленно-гражданских сооружений – 0.3 мм при продолжительном действии нагрузки, 0.4 – при кратковременном. Для различных безнапорных конструкций хранения жидкостей (неопасных, например – воды) ширину раскрытия трещин можно принять 0.2 мм при продолжительном действии нагрузки, 0.3 мм при кратковременном.

Шаг арматурных стержней, мм / Диаметр арматурных стержней

Используется для расчета по второму предельному состоянию (в частности, по трещиностойкости). При отсутствии информации, можно принять следующие значения:

· Для колонн/пилонов/балок – диаметр арматурных стержней – 20 мм;

· Для плит/стен – шаг арматурных стержней – 200 мм.

· Для плит – не задается, равно 1.0;

· Для монолитных стен с жестким соединением на обоих концах – 0.7-0.8 (чем больше, тем больше запас);

· Для сборных стен с шарнирным соединением на обоих концах – 1.0, 0.8 – при жестком;

· Для балок – равно 0 (нулю);

· Для монолитных колонн с жестким соединением на обоих концах – 0.7-0.8 (чем больше, тем больше запас);

· Для сборных колонн с шарнирным соединением на обоих концах – 1.0, 0.8 – при жестком.

Коэффициент условия разрушения

Определяется согласно пункту 6.1.12 (б). Условно можно принять 0.9, если при прикидочных расчетах было определен коэффициент армирования сечения более 2%. Также, можно принять 0.9 в запас. По-умолчанию – 1.0.

Коэффициент условия бетонирования

Определяется согласно пункту 6.1.12 (в). Условно можно принять:

· Для монолитных плит и балок – 1.0;

· Для монолитных стен и колонн при их высоте более 1.5 м – 0.85;

· Для сборных конструкций – 1.0.

В целом, коэффициент принимается равным 0.85, при высоте выгрузки бетонной смеси в опалубку при бетонировании более 1.5 метра. Таким образом, учитывается снижение прочности бетона при расслаивании бетонной смеси.

Коэффициент условия замораживания-оттаивания

Определяется согласно пункту 6.1.12 (после Г). Если при бетонировании не происходит замораживание/оттаивание смеси коэффициент принимается 1.0. Иначе, коэффициент принимается по опыту, либо каким-либо иным обоснованием (аналитическим, лабораторным испытанием и т.д.).

Определяется согласно пункту 8.1.7. Величина случайного эксцентриситета принимается наибольшим из:

· L/600, где L – расстояние между точками закрепления конструкции;

· h/30, где h – высота/ширина габарита сечения конструкции;

Значения случайных эксцентриситетов для некоторых сечений внецентренно-сжатых конструкций:

· Свая сечением 300х300 мм (любой длины): 1.00 см вдоль Z и Y осей;

· Свая сечением 350х350 мм (любой длины): 1.17 см вдоль Z и Y осей;

· Свая сечением 400х400 мм (любой длины): 1.33 см вдоль Z и Y осей;

Читайте также  Армирование мелкозаглубленного ленточного фундамента

· Колонна сечением 400х400 мм (высотой до 8 м): 1.33 см вдоль Z и Y осей;

· Колонна сечением 500х500 мм (высотой до 10 м): 1.67 см вдоль Z и Y осей;

· Колонна сечением 600х600 мм (высотой до 12 м): 2.00 см вдоль Z и Y осей;

· Стена толщиной ≤ 300 мм (высотой до 6 м): 1.00 см вдоль Z и Y осей.

Выбирается согласно пункту 6.1.20 – 6.1.21. Для повышения точности расчета – трехлинейная.

Относительная влажность воздуха

Определяется согласно СП 131.13330 в соответствии с пунктом 6.1.14 и примечаний 1 таблиц 6.10, 6.12. Относительная влажность воздуха определяется как средняя месячная наиболее теплого месяца для района строительства, по столбцу 8 таблицы 4.1 СП 131.13330.

· Для Санкт-Петербурга – 72%;

Примечание: возможно для строительства в зимнее время относительную влажность следует определять как среднюю наиболее холодного месяца района, по столбцу 15 таблицы 3.1 СП 131.13330.

· Для Санкт-Петербурга — 86%;

Максимальный диаметр продольной арматуры

Используется только при расчете по трещиностойкости. Условно можно принять 28-32 мм.

Коэффициенты учета сейсмического воздействия

Если сейсмического воздействия нет, то оба коэффициента равны 1. Иначе, определяется по т.6 СП 14.13330.

Процент арматуры в железобетоне — каким должно быть оптимальное значение?

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

  1. Степень армирования
  2. Особенности расчетов
  3. Значение армирования
  4. Минимальный процент
  5. Максимальный коэффициент арматуры
  6. Сохранение прочности
  7. Защитный слой бетона

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.

Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Наименование стройматериала Ширина объекта, см Слой бетона, см
Несущая стена Более 10 1,5
Стена Менее 10 1
Ребро 25 2
Балка Менее 25 1,5
Колонна 3
Фундаментная балка

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

Армирование колонн. Пояснение к важным пунктам «Руководства по конструированию»

Все, что касается конструирования колонн, изложено в «Руководстве по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения)» – пункты 3.59 – 3.72, также важная информация содержится в пунктах 3.73 – 3.90 (их мы разбирать в этой статье не будем).

В данной статье я хочу дать пояснения к важным пунктам руководства, возможно, это поможет вам подойти к конструированию более осознанно.

Итак, начнем разбор.

Пункт 3.60. О гибкости колонн.

Обратите внимание на этот пункт и всегда проверяйте гибкость колонны. Здесь l₀ — это рабочая высота колонны, она принимается согласно указаниям «Пособия по проектированию железобетонных конструкций без предварительного напряжения арматуры», r — радиус инерции сечения, h — высота сечения.

В чем суть этого требования? Чем длиннее колонна, тем больше должно быть ее сечение — это основное условие устойчивости. Слишком тонкая и длинная колонна будет гибкой, и шансов потерять устойчивость у такой колонны намного больше. Условие из п. 3.60 позволяет ограничить соотношение длины колонны и ее сечения (будь это высота сечения или радиус инерции).

Пункт 3.62. О защитном слое бетона.

Требование по защитному слою арматуры — очень важное.

Во-первых, согласно п. 3.4 руководства есть четкое требование по ограничению защитного слоя для рабочей арматуры — не более 50 мм. Какова причина такого ограничения? При большем защитном слое бетон колонны просто начнет растрескиваться, необходимо будет устанавливать дополнительные сетки, а в колоннах это делать совсем не рационально.

Во-вторых, согласно таблице 23 защитный слой для рабочей арматуры должен быть не менее 20 мм или не менее диаметра арматуры (например, при диаметре арматуры 25 мм защитный слой должен быть не меньше 25 мм). Это требование тоже обоснованное. При меньшем защитном слое есть риск того, что арматура начнет оголяться, подвергаться коррозии и разрушаться.

Поэтому мы всегда должны придерживаться золотой середины. По моему опыту это 25-30 мм.

Пункт 3.63. О длине рабочей арматуры.

Почему дается ограничение по длине стержня? Коррозия здесь играет очень малую роль. В основном важно удобство укладки арматуры в опалубку. Погрешности при нарезке арматуры тоже бывают, и очень неприятно, когда стержень каркаса не помещается в опалубке. Особенно этот пункт важен для сборных колонн.

Пункт 3.64. О площади рабочей арматуры.

Очень и очень важный пункт. Особенно для расчетчиков. Если по вашему расчету колонна проходит, но площадь ее арматуры больше 5%, будут огромные трудности с размещением этой арматуры в пределах сечения!
Если вы считаете в расчетных комплексах вроде Лиры, всегда проверяйте процент армирования колонн и увеличивайте их сечение, если процент слишком большой.

Особенно важно проверять процент армирования для колонн, арматура которых стыкуется нахлесткой. В месте нахлестки арматуры в два раза больше, и нужно всегда прорисовывать это сечение, чтобы понять, смогут ли строители нормально забетонировать колонну.

Оптимальный процент армирования колонн 2,5-3%.

Как найти процент армирования колонны?
Допустим, сечение колонны 400х400 мм (т.е. ее площадь равна 40*40=1600 см2), площадь арматуры 40 см2.
Процент армирования равен 40*100/1600=2,5%

Пункты 3.65 и 3.66. О диаметрах рабочей арматуры колонн.

Очень важно запомнить требования пункта 3.65 и всех желающих сэкономить (а таких будет много на вашем пути) посылать к этому пункту. А для себя еще важно запомнить, что и для монолитных колонн применение двенадцатки крайне сомнительно — разве что в частных двухэтажных домиках — не зря в руководстве используется слово «допускается» (т.е. можно, но хорошо подумай, прежде чем применять).

По поводу применения стержней разного диаметра очень важно запомнить для себя правило: стержни соседних диаметров в одной конструции применять нельзя! (8 и 10, 10 и 12, 12 и 14 и т.д.). На глаз эти стержни очень легко перепутать, а у строителей арматура не подписана. Берегите их от ошибок и конструкции от аварий.
Вообще стержни разных диаметров можно применять в целях экономии, особенно при больших объемах строительства. Допустим, колонну выгодней заармировать 4d16+4d20, чем просто 8d20; но если таких колонн не 50 штук, а всего две-три, то стоит подумать о строителях, которым ради нескольких десятков метров придется заказывать арматуру разных диаметров.

Обратите внимание на то, что в отличие от балок при армировании колонн нужно избегать установки арматуры в два ряда.

Пункт 3.67. О выпусках арматуры из колонн.

Обратите внимание на то, что выделено жирным. При конструировании колонн стыковка арматуры без сварки очень часто выливается в немалую проблему, особенно если используется арматура не по ГОСТ 5781-82, а по ДСТУ3760:2006. Дело в том, что у арматуры по ДСТУ просто огромная величина нахлестки. К примеру, для арматуры диаметром 25 мм требуется величина нахлестки 1400 мм. Если располагать нахлестку с разбежкой, как оказано на рисунке 71а (там 50% стержней выводятся на одну величину нахлестки, а вторые 50% — на две величины нахлестки), то получается уже 1400 мм и 2800 мм (почти высота этажа). Представьте себе, какой сумасшедший перерасход арматуры будет, если на каждом этаже выполнять такие стыки. А ведь бывает арматура и больших диаметров.
В случае возникновения такой проблемы всегда рациональней предпочесть стыковку арматуры сваркой с накладками (стыкам арматуры будет посвящен отдельный день в марафоне). Если же стыковать сваркой по какой-то причине не получается (не согласен заказчик, т.к. нет квалифицированных сварщиков и т.д.), то следует обратить внимание на вот эти строки из п. 3.67:

Читайте также  Правила армирования ленточного фундамента

«При высоте этажа менее 3,6 м или при продольной арматуре d ≥ 28 мм стыки рекомендуется устраивать через этаж».

На что еще следует обратить внимание при конструировании стыковки арматуры в колоннах?
1) Если колонна небольшого сечения, и арматура в ней расположена довольно насыщено, нужно проверить, как же эта арматура сможет разместиться в местах нахлестки.
2) Обязательно нужно делать на чертеже схему расположения выпусков арматуры из колонны нижнего этажа — чтобы до бетонирования рабочие установили стержни в нужном положении. А то бывает забетонируют все, начинают устанавливать арматуру следующего этажа, и то стержни некуда ставить, то защитного слоя бетона для выпусков не остается (а для выпусков защитный слой должен быть не меньше, чем для основной арматуры).
3) Нужно указывать в ведомости деталей, что стержни диаметром более 18 мм нужно изгибать с соблюдением радиусов загиба (см. рисунок 1в руководства).

Пункт 3.68. О расстоянии между стержнями колонн.

Очень важный пункт. Пустовать пространство армированного железобетона не должно, поэтому стержни устанавливаем не реже, чем через 400 мм.
Но еще важнее расстояние между стержнями. Никогда не забываем, что в свету между стержнями должен нормально пройти бетон (а это не раствор, в нем камни довольно крупной фракции присутствуют).
Еще важнее помнить, что любой диаметр арматуры (10, 18 или 25 мм) — это номинальный диаметр, который не учитывает выступающих серповидных частей арматуры.

В ГОСТе или ДСТУ на арматуру вы можете найти реальный диаметр арматурного стержня, который будет больше номинального (для арматуры 8 реальный размер 9 мм; для арматуры 25 реальный размер 27 мм). В густоармированных сечениях всегда важно прорисовывать размещение арматуры с учетом реальных диаметров.

Пункт 3.69. О конструировании сечения колонны.

Очень важно не забывать о конструктивной арматуре. Как сказано в этом пункте, конструктивная арматура нужна для предотвращения выпучивания при бетонировании. Вы можете в проекте указать рабочую арматуру по расчету, но будет ли с нее толк, если при бетонировании арматура разъедется и для нее не останется защитного слоя бетона?
Если вы армируете сетками, всегда сверяйтесь с рисунком 72 — все ли дополнительные стержни вы поставили, чтобы каркас был достаточно жестким.

Если вы армируете вязаным каркасом, сверяйтесь с рисунком 73. При маленьком сечении колонны дополнительные шпильки не нужны, но чем сечение больше, тем больше шпилек нужно устанавливать. А в самом большом сечении (более 1200 мм сторона колонны) устанавливается уже два хомута (как это показывается под сечением колонны).

Пункт 3.70. О диаметрах поперечной арматуры.

Даже если по расчету у нас получился небольшой диаметр хомутов в колонне, его нужно перепроверить по таблице 24. Чаще всего приходится назначать по конструктивным требованиям диаметр больший, чем получилось по расчету.

На первый взгляд кажется: ну зачем этот перерасход? Но в любых каркасах, сварных или вязаных, всегда соблюдается соотношение продольной и поперечной арматуры, это обеспечивает надежную работу всей арматурной конструкции. В сварных каркасах это особенно важно, так как надежное сварное соединение можно получить лишь при указанном соотношении диаметров свариваемой арматуры.

Пункт 3.71. О шаге поперечной арматуры.

Когда вы определили диаметр хомутов, нужно назначить их шаг. Расчет – расчетом, но окончательно мы всегда сверяемся с таблицей 25. Как видите, шаг хомутов зависит от класса арматуры, это нужно учитывать при выборе. Значение Rac – это расчетное сопротивление арматуры сжатию для предельных состояний первой группы.

С процентом армирования μ более 3% нужно быть тоже внимательными – оно сразу вызывает сгущение шага поперечной арматуры. Мало того, при стыковке арматуры в нахлестку, при проценте армирования 3 и более всегда возникают проблемы с размещением арматуры. По возможности такого насыщенного армирования нужно избегать.

Заметьте, если вы стыкуете арматуру в нахлестку, в местах нахлестки всегда идет более частое расположение хомутов.

Если вы применяете арматуру по ДСТУ 3760, проверяйте все требования еще и по «Рекомендациям по применению арматурного проката по ДСТУ 3760-98» и выбирайте худший вариант.

Пункт 3.72. Конструирование колонн с круглым сечением.

Требования пункта 3.72 довольно четкие. Круглыми в сечении должны быть спирали, так как при любом отклонении от круга в арматуре будут возникать дополнительные напряжения. Да и навивочную машину, обеспечивающую спираль не круглого сечения вряд ли можно найти.

Еще хочется добавить, что требования к армированию круглых колонн можно использовать при армировании буроинъекционных свай круглого сечения.

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Минимальный армирующий процент

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Защитный слой бетона

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.