Допустимый прогиб плиты перекрытия

Сайт инженера-проектировщика

Свежие записи

Предельные прогибы

Согласно: СП 20.13330.2016:

Приложение Д

Прогибы и перемещения Д.2

Предельные прогибы Д.2.1

Вертикальные предельные прогибы элементов конструкций

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в таблице Д.1. Требования к зазорам между смежными элементами приведены в Д.1.6 приложения Д.1.

l — расчетный пролет элемента конструкции:

а — шаг балок или ферм, к которым крепятся подвесные крановые пути.

1 Для консоли вместо l следует принимать удвоенный ее вылет.

2 Для промежуточных значений l в позиции 2, а предельные прогибы следует определять линейной интерполяцией, учитывая требования Д.1.7 приложения Д.

3 В позиции 2, а цифры, указанные в скобках, следует принимать при высоте помещений до 6 м включительно.

4 Особенности вычисления прогибов по позиции 2, г указаны в Д.1.8 приложения Д.

Д.2.2 Предельные прогибы (физиологические)

Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований следует определять по формуле

(Д.1)

где g — ускорение свободного падения;

р — нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по таблице Д.2;

р1 — пониженное нормативное значение нагрузки на перекрытия, принимаемое по таблице Д.2;

q — нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

n — частота приложения нагрузки при ходьбе человека, принимаемая по таблице Д.2;

b — коэффициент, принимаемый по таблице Д.2.

Позиции 4, бг, кроме танцевальных

Q — вес одного человека, принимаемый равным 0,8 кН;

α — коэффициент, принимаемый равным 1,0 для элементов, рассчитываемых по балочной схеме, 0,5 — в остальных случаях (например, при опирании плит по трем или четырем сторонам);

а — шаг балок, ригелей, ширина плит (настилов), м;

Прогибы следует определять от суммы нагрузок φ1р + р1 + q, где φ1 — коэффициент, определяемый по формуле (8.1).

Д.2.3 Горизонтальные предельные прогибы колонн
и тормозных конструкций от крановых нагрузок

Д.2.3.1 Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм), следует принимать по таблице Д.3, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

h — высота от верха фундамента до головки кранового рельса (для одноэтажных зданий, крытых и открытых крановых эстакад) или расстояние от оси ригеля перекрытия до головки кранового рельса (для верхних этажей многоэтажных зданий);

Д.2.3.2 Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Д.2.4 Горизонтальные предельные перемещения и прогибы зданий,
отдельных элементов конструкций и опор конвейерных галерей
от ветровой нагрузки, крена фундаментов
и температурных климатических воздействий

Д.2.4.1 Горизонтальные предельные перемещения зданий, ограничиваемые исходя из конструктивных требований (обеспечение целостности заполнения каркаса стенами, перегородками, оконными и дверными элементами), приведены в таблице Д.4. Указания по определению перемещений приведены в Д.1.9 приложения Д.

Горизонтальные перемещения зданий следует определять с учетом крена (неравномерных осадок) фундаментов. При этом нагрузки от веса оборудования, мебели, людей, складируемых материалов и изделий следует учитывать только при сплошном равномерном загружении всех перекрытий многоэтажных зданий этими нагрузками (с учетом их снижения в зависимости от числа этажей), за исключением случаев, при которых по условиям нормальной эксплуатации предусматривается иное загружение.

Для зданий высотой до 40 м (и опор конвейерных галерей любой высоты), расположенных в ветровых районах I — IV, крен фундаментов, вызываемый ветровой нагрузкой, допускается не учитывать.

h — высота многоэтажных зданий, равная расстоянию от верха фундамента до оси ригеля покрытия;

hs — высота этажа в одноэтажных зданиях, равная расстоянию от верха фундамента до низа стропильных конструкций; в многоэтажных зданиях; для нижнего этажа — равная расстоянию от верха фундамента до оси ригеля перекрытия: для остальных этажей — равная расстоянию между осями смежных ригелей.

1 Для промежуточных значений hs (по позиции 3) горизонтальные предельные перемещения следует определять линейной интерполяцией.

2 Для верхних этажей многоэтажных зданий, проектируемых с использованием элементов покрытий одноэтажных зданий, горизонтальные предельные перемещения следует принимать такими же, как и для одноэтажных зданий. При этом высота верхнего этажа hsпринимается от оси ригеля междуэтажного перекрытая до низа стропильных конструкций.

3 К податливым креплениям относятся крепления стен или перегородок к каркасу, не препятствующие смешению каркаса (без передачи на стены или перегородки усилий, способных вызвать повреждения конструктивных элементов); к жестким — крепления, препятствующие взаимным смещениям каркаса, стен или перегородок.

Д.2.4.2 Для 2-го предельного состояния горизонтальные перемещения бескаркасных зданий от ветровых нагрузок не ограничиваются.

Д.2.4.3 Горизонтальные предельные прогибы стоек и ригелей фахверка, а также навесных стеновых панелей от ветровой нагрузки, ограничиваемые исходя из конструктивных требований, следует принимать равными l/200, где l — расчетный пролет стоек или панелей.

Д.2.4.4 Горизонтальные предельные прогибы опор конвейерных галерей от ветровых нагрузок, ограничиваемые исходя из технологических требований, следует принимать равными h/250, где h — высота опор от верха фундамента до низа ферм или балок.

Д.2.4.5 Горизонтальные предельные прогибы колонн (стоек) каркасных зданий от температурных климатических и усадочных воздействии следует принимать равными:

hs/150 — при стенах и перегородках из кирпича, гипсобетона, железобетона и навесных панелей;

hs/200 — при стенах, облицованных естественным камнем, из керамических блоков, из стекла (витражи), где hs — высота этажа, а для одноэтажных зданий с мостовыми кранами — высота от верха фундамента до низа балок кранового пути.

При этом температурные воздействия следует принимать без учета суточных колебаний температур наружного воздуха и перепада температур от солнечной радиации.

При определении горизонтальных прогибов от температурных климатических и усадочных воздействий их значения не следует суммировать с прогибами от ветровых нагрузок и от крена фундаментов.

Д.2.5 Предельные выгибы элементов междуэтажных перекрытий
от усилий предварительного обжатия

Предельные выгибы fu элементов междуэтажных перекрытий, ограничиваемые исходя из конструктивных требований, следует принимать равными 15 мм при l ≤ 3 м и 40 мм — при l ≥ 12 м (для промежуточных значений lпредельные выгибы следует определять линейной интерполяцией).

Выгибы f следует определять от усилий предварительного обжатия, собственного веса элементов перекрытий и веса пола.

Согласно: СП 20.13330.2011 (Не действует):

Е.2 Предельные прогибы

Е.2.1 Вертикальные предельные прогибы элементов конструкций

Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в таблице Е.1. Требования к зазорам между смежными элементами приведены в Е.1.6 приложения Е.1.

Е.2.2 Предельные прогибы (физиологические)

Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий исходя из физиологических требований следует определять по формуле

где g — ускорение свободного падения;

р — нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по таблице Е.2;

р1 — пониженное нормативное значение нагрузки на перекрытия, принимаемое по таблице Е.2;

q — нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

п — частота приложения нагрузки при ходьбе человека, принимаемая по таблице Е.2;

b — коэффициент, принимаемый по таблице Е.2.

Прогибы следует определять от суммы нагрузок j1p + р1 + q, где j1 — коэффициент, определяемый по формуле (8.1).

Е.2.3 Горизонтальные предельные прогибы колонн и тормозных конструкций от крановых нагрузок

Е.2.3.1 Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм) следует принимать по таблице Е.3, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

Е.2.3.2 Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Е.2.4 Горизонтальные предельные перемещения и прогибы зданий, отдельных элементов конструкций и опор конвейерных галерей от ветровой нагрузки, крена фундаментов и температурных климатических воздействий

Е.2.4.1 Горизонтальные предельные перемещения зданий, ограничиваемые исходя из конструктивных требований (обеспечение целостности заполнения каркаса стенами, перегородками, оконными и дверными элементами), приведены в таблице Е.4. Указания по определению перемещений приведены в Е.1.9 приложения Е.

Горизонтальные перемещения зданий следует определять с учетом крена (неравномерных осадок) фундаментов. При этом нагрузки от веса оборудования, мебели, людей, складируемых материалов и изделий следует учитывать только при сплошном равномерном загружении всех перекрытий многоэтажных зданий этими нагрузками (с учетом их снижения в зависимости от числа этажей), за исключением случаев, при которых по условиям нормальной эксплуатации предусматривается иное загружение.

Для зданий высотой до 40 м (и опор конвейерных галерей любой высоты), расположенных в ветровых районах I-IV, крен фундаментов, вызываемый ветровой нагрузкой, допускается не учитывать.

Как классифицируют плоские железобетонные перекрытия? При каком соотношении сторон плиты перекрытия работают на изгиб в 2 направлениях?

ОБЩИЕ УКАЗАНИЯ

10.1. При расчете строительных конструкций по прогибам (выгибам) и перемещениям должно быть выполнено условие

где f — прогиб (выгиб) и перемещение элемента конструкции (или конструкции в целом), определяемые с учетом факторов, влияющих на их значения, в соответствии с пп. 1-3 рекомендуемого приложения 6;

fu — предельный прогиб (выгиб) и перемещение, устанавливаемые настоящими нормами.

Расчет необходимо производить исходя из следующих требований:

а) технологических (обеспечение условий нормальной эксплуатации технологического и подъемно-транспортного оборудования, контрольно-измерительных приборов и т.д.);

б) конструктивных (обеспечение целостности примыкающих друг к другу элементов конструкций и их стыков, обеспечение заданных уклонов);

в) физиологических (предотвращение вредных воздействий и ощущений дискомфорта при колебаниях);

г) эстетико-психологических (обеспечение благоприятных впечатлений от внешнего вида конструкций, предотвращение ощущения опасности).

Каждое из указанных требований должно быть выполнено при расчете независимо от других.

Ограничения колебаний конструкций следует устанавливать в соответствии с нормативными документами п. 4 рекомендуемого приложения 6.

10.2. Расчетные ситуации, для которых следует определять прогибы и перемещения, соответствующие им нагрузки, а также требования, касающиеся строительного подъема, приведены в п. 5 рекомендуемого .

10.3. Предельные прогибы элементов конструкций покрытий и перекрытий, ограничиваемые исходя из технологических, конструктивных и физиологических требований, следует отсчитывать от изогнутой оси, соответствующей состоянию элемента в момент приложения нагрузки, от которой вычисляется прогиб, а ограничиваемые исходя из эстетико-психологических требований — от прямой, соединяющей опоры этих элементов (см. также п. 7 рекомендуемого приложения 6).

10.4. Прогибы элементов конструкций не ограничиваются исходя из эстетико-психологических требований, если не ухудшают внешний вид конструкций (например, мембранные покрытия, наклонные козырьки, конструкции с провисающим или приподнятым нижним поясом) или если элементы конструкций скрыты от обзора. Прогибы не ограничиваются исходя из указанных требований и для конструкций перекрытий и покрытий над помещениями с непродолжительным пребыванием людей (например, трансформаторных подстанций, чердаков).

Примечание. Для всех типов покрытий целостность кровельного ковра следует обеспечивать, как правило, конструктивными мероприятиями (например, использованием компенсаторов, созданием неразрезности элементов покрытия), а не повышением жесткости несущих элементов.

10.5. Коэффициент надежности по нагрузке для всех учитываемых нагрузок и коэффициент динамичности для нагрузок от погрузчиков, электрокаров, мостовых и подвесных кранов следует принимать равными единице.

Коэффициенты надежности по ответственности необходимо принимать в соответствии с обязательным приложением 7.

10.6. Для элементов конструкций зданий и сооружений, предельные прогибы и перемещения которых не оговорены настоящим и другими нормативными документами, вертикальные и горизонтальные прогибы и перемещения от постоянных, длительных и кратковременных нагрузок не должны превышать 1/150 пролета или 1/75 вылета консоли.

Что означает маркировка плит?


Сортамент плит перекрытия пустотных составлен с учетом их размеров и прочности.

Маркировка начинается с аббревиатуры ПК, то есть «плита круглопустотная», и содержит описание продукции.

Разберем значение цифр на примере названия ПК-30-12-8:

  • 30 — длина пустотной плиты перекрытия в дециметрах
  • 12 — ширина изделия в дм
  • 8 — максимальная нагрузка на 1 дм2 в кг, то есть 800 кг на м2, в которые входит и вес самой плиты

В маркировке цифры округляются, в приведенном примере реальная длина плит перекрытия пустотных составит около 1180 см, а ширина – 1190 см.

Указанные параметры нагрузки используются чаще всего, однако возможны и другие значения – от 500 до 1500 кг на м2. В планировке жилых и офисных помещений стандартная нагрузка на плиты перекрытия пустотные 800 кг/м2, как правило, отвечает эксплуатационным требованиям.

ВЕРТИКАЛЬНЫЕ ПРЕДЕЛЬНЫЕ ПРОГИБЫ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

10.7. Вертикальные предельные прогибы элементов конструкций и нагрузки, от которых следует определять прогибы, приведены в табл. 19. Требования к зазорам между смежными элементами приведены в п. 6 рекомендуемого приложения 6.

Обозначения, принятые в табл. 19:

l — расчетный пролет элемента конструкции;

а — шаг балок или ферм, к которым крепятся подвесные крановые пути.

Примечания: 1. Для консоли вместо l следует принимать удвоенный ее вылет.

2. Для промежуточных значений l в поз. 2, а предельные прогибы следует определять линейной интерполяцией, учитывая требования п. 7 рекомендуемого приложения 6.

Читайте также  Шамотный раствор для кладки печи своими руками

3. В поз. 2, а цифры, указанные в скобках, следует принимать при высоте помещений до 6 м включительно.

4. Особенности вычисления прогибов по поз. 2, г указаны в п. 8 рекомендуемого приложения 6.

5. При ограничении прогибов эстетико-психологическими требованиями допускается пролет l принимать равным расстоянию между внутренними поверхностями несущих стен (или колонн).

10.8. Расстояние (зазор) от верхней точки тележки мостового крана до нижней точки прогнутых несущих конструкций покрытий (или предметов, прикрепленных к ним) должно быть не менее 100 мм.

10.9. Прогибы элементов покрытий должны быть такими, чтобы, несмотря на их наличие, был обеспечен уклон кровли не менее 1/200 в одном из направлений (кроме случаев, оговоренных в других нормативных документах).

10.10. Предельные прогибы элементов перекрытий (балок, ригелей, плит), лестниц, балконов, лоджий, помещений жилых и общественных зданий, а также бытовых помещений производственных зданий, исходя из физиологических требований, следует определять по формуле

где g — ускорение свободного падения;

р — нормативное значение нагрузки от людей, возбуждающих колебания, принимаемое по табл. 20;

р1 — пониженное нормативное значение нагрузки на перекрытия, принимаемое по табл. 3 и 20;

q — нормативное значение нагрузки от веса рассчитываемого элемента и опирающихся на него конструкций;

п — частота приложения нагрузки при ходьбе человека, принимаемая по табл. 20;

b — коэффициент, принимаемый по табл. 20.

поз. 3, 4,а, 9,б, 10,б

поз. 4, б-г, кроме танцевальных;

поз. 9,а, 10,а, 12, 13

Обозначения, принятые в табл. 20:

Q — вес одного человека, принимаемый равным 0,8 кН (80 кгс);

a — коэффициент, принимаемый равным 1,0 для элементов, рассчитываемых по балочной схеме, 0,5 — а остальных случаях (например, при опирании плит по трем или четырем сторонам);

а — шаг балок, ригелей, ширина плит (настилов), м;

l — расчетный пролет элемента конструкции, м.

Прогибы следует определять от суммы нагрузок yА1p + р1 + q, где yA1 — коэффициент, определяемый по формуле (1).

■ Расчет и конструирование балочной плиты.

Различают плиты монолитных перекрытий балочные и опертые по контуру. В балочных плитах, характеризуемых соотношением ly/lx>2, кривизна плиты и изгибающие моменты от нагрузки значительно больше в поперечном направлении, чем в продольном (рис. 9.6, а). Поэтому изгибом в продольном направлении пренебрегают. В плитах, опертых по контуру, необходимо учитывать изгиб в обоих направлениях. В ребристых перекрытиях наиболее часто встречаются балочные плиты. Для расчета таких плит выделяют полосу шириной 1 м (рис. 9.5, б, в) и рассматривают ее как неразрезную балку, опертую на второстепенные балки и наружные стены. Расчет плиты производят с учетом перераспределения усилий, при этом в целях упрощения конструирования принимают (см. рис. 9.6, б):

в первом пролете и на первой промежуточной опоре

в средних пролетах и на средних опорах

Рис. 9.6. Расчетная схема и армирование монолитных балочных плит

Расчетное значение средних пролетов принимают равным расстоянию между гранями второстепенных балок l02 = l2—b, крайних пролетов (при свободном опирании одного конца плиты на стену) — расстоянию между гранью ребра балки и осью опоры на стене l01=l1—0,5b.

В балочных плитах, окаймленных по контуру балками, горизонтальным смещениям опорных сечений препятствует распор Н, возникающий вследствие жесткости этих балок и повышающий несущую способность плиты (см. рис. 9.6, б). Учитывают это явление путем снижения моментов в средних пролетах и на средних опорах на 20%. Площадь арматуры в расчетных сечениях определяют как для прямоугольного сечения с одиночной арматурой шириной b=100 см и высотой hf.

Расчет плит по наклонным сечениям не производят, так как практически всегда соблюдается условие (4.33).

Армирование многопролетных балочных плит осуществляют, как правило, сварными рулонными сетками. При этом для плит с hf=6…10 см обычно применяют непрерывное армирование (рис. 9.6, г) рулонными сетками с продольной рабочей арматурой (d≤5 мм), а для плит с hf>10 см — раздельное армирование (рис. 9.6, д) плоскими или рулонными сетками с поперечной рабочей арматурой. При непрерывном армировании основную арматуру с площадью As подбирают по моменту ql /16, а в первом пролете и над первой опорой устанавливают дополнительную арматуру ΔAs, подбирая по моменту ΔM=ql /11-ql /16.

При сложном форме плит, наличии неупорядоченных отверстий, реконструкции возможно применение вязаных сеток.

ГОРИЗОНТАЛЬНЫЕ ПРЕДЕЛЬНЫЕ ПРОГИБЫ КОЛОНН И ТОРМОЗНЫХ КОНСТРУКЦИЙ ОТ КРАНОВЫХ НАГРУЗОК

10.11. Горизонтальные предельные прогибы колонн зданий, оборудованных мостовыми кранами, крановых эстакад, а также балок крановых путей и тормозных конструкций (балок или ферм), следует принимать по табл. 21, но не менее 6 мм.

Прогибы следует проверять на отметке головки крановых рельсов от сил торможения тележки одного крана, направленных поперек кранового пути, без учета крена фундаментов.

Группы режимов работы кранов Предельные прогибы fu
колонн балок крановых путей и тормозных конструкций, зданий и крановых эстакад (крытых и открытых)
зданий и крытых крановых эстакад открытых крановых эстакад
1К — 3К h/500 h/1500 l/500
4К — 6К h/1000 h/2000 l/1000
7К — 8К h/2000 h/2500 l/2000

Обозначения, принятые в табл. 21:

h — высота от верха фундамента до головки кранового рельса (для одноэтажных зданий и крытых и открытых крановых эстакад) или расстояние от оси ригеля перекрытия до головки кранового рельса (для верхних этажей многоэтажных зданий);

l — расчетный пролет элемента конструкции (балки).

10.12. Горизонтальные предельные сближения крановых путей открытых эстакад от горизонтальных и внецентренно приложенных вертикальных нагрузок от одного крана (без учета крена фундаментов), ограничиваемые исходя из технологических требований, следует принимать равными 20 мм.

Правильное хранение плит перекрытия

Чтобы не допустить уменьшения проектной прочности пустотных плит еще до монтажа, следует выполнять основные правила их складирования:

  • Укладываются петлями вверх на твердую ровную поверхность, лучше асфальт или щебень, без контакта с землей, на перегородки от 15 см высотой.
  • Между плитами в районе петель строго друг под другом – деревянные бруски толщиной 2,5-3 см.
  • Высота штабеля – не более 2,5 м
  • Сверху накрыть водонепроницаемой пленкой или рубероидом

Точное соблюдение условий хранения плит перекрытия и грамотный монтаж позволят легко выйти на расчетные показатели нагрузок.

Максимально допустимый прогиб плиты перекрытия. Предельно допустимый прогиб для рассчитываемой плиты с учетом эстетических требований согласно нормам принимается равным

21-01-2013: Доктор Лом

1. Такой прогиб является допустимым согласно общепринятых строительных норм и правил и, так сказать, для общего случая. При превышении допустимого прогиба балка не треснет, если она была предварительно рассчитана на прочность, но такой прогиб может мешать нормальной эксплуатации или эстетическому виду конструкции. Но случаи бывают разные, например, для оштукатуриваемых деревянных конструкций прогиб не должен превышать 1/350 пролета. Вы можете использовать для расчетов это значение.

2. Максимальный прогиб балки будет только при максимальной нагрузке, которая складывается из постоянной и временной (длительной и кратковременной). И прогиб балки также складывается из постоянного и временного. Чем больше доля кратковременной нагрузки (для конструкций по деревянному перекрытию эта доля может составлять более 60%, а для железобетонных плит до 30%, тем больше доля временного прогиба и тем больше вероятность, что напольная керамическая плитка будет отслаиваться или трескаться, или появятся трещины на стыках гипсокартона. Однако не забывайте, что это все равно составит не более 1 см на 4 метра (от кратковременной нагрузки), а это, смею Вас уверить, очень небольшой прогиб (в хрущевках железобетонные плиты размером на комнату иногда имеют прогиб до 10 см на 3 метра и никого это сильно не беспокоит и установке раздвижных дверей не мешает, в частности потому, что доля кратковременного прогиба в таких случаях составляет 10-15%). Указанное Вами ограничение по прогибу 5 мм нужно использовать для расчетов на прогиб только от временной нагрузки, какая она у Вас, я даже приблизительно не представляю.

3. Если Вы собираетесь укладывать на пол по деревянным балкам керамическую плитку, то конечно же Вам потребуются балки, обеспечивающие минимально возможный прогиб, т.е. сечение балки нужно подбирать не по прочности, а по прогибу. И кроме того, черновой пол, который скорее всего будет из досок, также должен минимально прогибаться при действии кратковременной нагрузки. И отслаиваться или трескаться керамическая плитка будет скорее от прогиба чернового пола, чем от прогиба балок.

4. Чтобы уменьшить прогиб балки можно уменьшить расстояние между балками (заодно это уменьшит и прогиб чернового пола), использовать металлические или железобетонные балки (а вообще почитайте статью про укладку плитки на пол).

В статье все вышесказанное заключалось в предложении: «подобрать такое сечение балки, прогиб которой устраивает или Вас или СНиП»

28-05-2013: Игорь

Добрый день Доктор Лом,

У меня вопрос по балкам перекрытия первого этажа.

Есть помещение 6м х 3.8м. Балки размером 3,8м х 0.05м х 0,15м. С шагом 0.55 м. Хочу нагрузить такие перекрытия двумя листами ЦСП вперехлест 12мм и 16мм, и на них положить плитку. Выдержал ли такие перекрытия керамический пол и мебель (кухня). Буду благодарен за ответы.

28-05-2013: Доктор Лом

В вашем случае определяющим будет расчет на прогиб, так как плитка очень не любит деформаций перекрытия и может при этом отслаиваться или трескаться. Достаточно подробно эта тема обсуждалась на форуме (ссылка на форум на главной странице сайта). Однако и по несущей способности нужен брус сечением как минимум 10х15 см, но если балки-лаги будут опираться на столбики, то это совсем другой расчет и многое будет зависеть от расстояния между столбиками.

10-09-2013: Артем

Подскажите пожалуйста. Вопрос по полу в срубе. Планирую лаги 200*100, шаг 60 см положить на цоколь. Пролет в комнате 4,7 м.(комната 4,7*8.3). Возможно ли положить лаги без опорных столбов? По таблице расчета получается прогиб 16 мм и запас по прогибу 1,19 раза. Будет ли пружинить или провисать пол? И еще буду делать в цоколе отверстия под лаги (на цоколь не могу ставить потому что рубщики вырезали окна слишком низко). На сколько их нужно углублять. Ну и вообще правильно ли я делаю?

10-09-2013: Доктор Лом

Да, можно положить лаги и без опорных столбов, вот только завести их при готовом срубе будет не просто. Как минимум с одной стороны придется делать сквозное отверстие.

По поводу заглубления со второй стороны отвечу так, чем длиннее будет опорная площадка, тем меньше будет деформация цокольного бруса под лагами. Подробности в статьях «Расчет опорной площадки стены на смятие» и «Расчет опорной площадки балки на смятие»

Определенный вами прогиб 1.6 см посредине лаги — это и есть, условно говоря, провисание пола при максимальной действующей нагрузке. Соответственно при минимальной нагрузке прогиба почти не будет. При ходьбе человека весом в 100 кг по середине комнаты прогиб (то, что вы обозначили как пружинные свойства) будет составлять до 2-3 мм. А если прыгать по полу, то и прогиб будет значительно больше. Устраивает вас такой пружинный прогиб или нет — решайте сами.

10-09-2013: Артем

Спасибо большое за развернутый ответ. А то писал на другом крупном форуме- ответили со второго раза, и то неправильно.

24-12-2013: алексей

Будьте так любезны, какой будет прогиб пола для помещения 3,5 м х 4. Предполагаемый сэндвич — балки 100х100х3900 с шагом 500 мм, с штроблением в стены по 200 мм, поперек доска сороковка, сверху плита фанера, на нее ламинат на ширину 2 метра, оставшиеся 1,5 метра плитка.

25-12-2013: Доктор Лом

Указанный вами сэндвич приведет к частичному перераспределению сосредоточенных нагрузок. При равномерно распределенной нагрузке состав сэндвича на несущую способность и на прогиб балок почти не влияет. Прогиб вы относительно легко можете определить по формуле, приведенной в статье, так как ваши балки будут шарнирно опертыми.

05-06-2014: владимир

подскажите пожалуйста как осознать нагрузку 400 кг/м я хочу построить мансарду над гаражом увеличить рабочее пространство.Деревянные балки показывают большой прогиб 7см 3см а если 4,6/250=1,84 см подшивать буду доской чем грозит увеличение прогиба и как узнать более точную нагрузку от моей мастерской

05-06-2014: Доктор Лом

400 кг/м 2 — это некая условная равномерно распределенная нагрузка, принимаемая для упрощения расчетов. Если в вашей мастерской стеллажи и всякое оборудование будут расположены возле стен, а посредине мастерской ничего громоздкого не будет, то нагрузка на перекрытие может быть меньше. Чтобы определить, насколько меньше, нужно составить с десяток расчетных схем, учитывающих виды нагрузок и время их приложения.

Если потолок будет подшит доской, то большой прогиб не будет иметь решающего значения, главное, чтобы прочности балок хватало.

04-06-2015: Василий

Добрый вечер, Доктор Лом. Деревянная балка перекрытия сарая сечением 10*10 см работает при проете 2м. По расчетам при увеличении пролета до 3 м сечение балки должно быть 13*13 см. Хочу усилить балку 10*10 двумя стальными уголками, прикрепленными по боковым стенкам балки. Какой номер уголка должен быть, чтобы комбинированная балка была эквивалентна балке 13*13 по прогибу?

Читайте также  Как монтировать винтовые сваи своими руками?

04-06-2015: Доктор Лом

Вопрос не обычный, поэтому отвечу с цифрами для большей наглядности и таким образом произведу большую часть расчета.

1. Сначала вам следует определить разницу моментов сопротивления для балок сечением 10х10 и 13х13 см. Эта разница покажет, сколько не хватает до требуемого момента сопротивления деревянной балки. (13 3 — 10 3)/6 = 199.5 см 3)

2. Определяете соотношение расчетных сопротивлений металла и древесины (например 2000/130 = 15)

3. Затем делите разницу на соотношение расчетных сопротивлений металла и древесины, т.е. переводите эту разницу в эквивалентную для металлической балки. (199.5/15 = 13.3 см 3)

4. По сортаменту подбираете требуемое сечение (например можно использовать 2 равнополочных уголка сечением 75х5, суммарный момент сопротивления таких уголков составит 7.21х2 = 14.42 см 3)

Если проектируется строительство двухэтажного или одноэтажного дома, но с подвалом или чердаком, необходимо правильно рассчитать и возвести межэтажные перекрытия. Рассмотрим этапы и нюансы выполнения перекрытия по деревянным балкам и выполним расчет сечений балок, обеспечивающих достаточную прочность.

Устройство межэтажных перекрытий нуждается в особом внимании, ведь выполненные «на глазок», они могут не выдержать приходящихся на них нагрузок и обрушиться, либо потребовать излишних, не мотивированных затрат. Поэтому нужно всесторонне обдумать и рассчитать один или несколько возможных вариантов. Окончательное решение можно принять, сравнив стоимость или доступность приобретения материалов.

Требования к межэтажным перекрытиям

Межэтажные перекрытия обязаны выдерживать постоянные и переменные нагрузки, то есть кроме собственного веса выдерживать вес мебели и людей. Они должны быть достаточно жёсткими и не допускать превышение максимального прогиба, обеспечивать достаточную шумо- и теплоизоляцию.

Удельные нагрузки от мебели и людей для жилого помещения принимаются согласно нормам. Однако если планируется установка чего-то массивного, например, аквариума на 1000 л или камина из натурального камня, это обязательно нужно учитывать.

Жесткость балок определяется расчётом и выражается в допустимом изгибе на длину пролёта. Допустимый изгиб зависит от вида перекрытия и материала покрытия. Основные предельные прогибы, определяемые СНиП, приведены в таблице 1.

Предельные прогибы в долях пролёта, не более

Определение прогиба ж/б балки

Существующие на сегодняшний день методики расчета железобетонных конструкций по второй группе предельных состояний, в частности расчет по деформациям, выглядят достаточно сложными и трудоемкими из-за использования множества уточняющих формул, иногда полученных эмпирическим путем.

Между тем человек, с трудом осиливший расчет на прочность (расчет по первой группе предельных состояний) железобетонной балки или плиты перекрытия для частного дома, выполнить расчет по второй группе предельных состояний в соответствии с требованиями нормативных документов уже не в состоянии. Остается только надеяться, что прогиб если и будет, то будет небольшой.

Однако, как показывает практика, для железобетонных конструкций — шарнирно опертых однопролетных балок именно расчет по второй группе предельных состояний является определяющим, в том смысле, что прогиб таких балок, рассчитанных только на прочность, очень часто больше предельно допустимого.

Например, в «Пособии по проектированию бетонных и ж/б конструкций из тяжелого бетона. (к СП 52-101-2003)» приводится расчет на прогиб железобетонной прямоугольной плиты перекрытия — шарнирно опертой бесконсольной балки размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (Еb = 245000 кгс/см 2 , Rb = 85 кгс/см 2 ); растянутая арматура класса А400 (Es= 2·10 6 кгс/см 2 ) с площадью поперечного сечения As = 7.69 cм 2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кН/м. В результате расчета прогиб такой плиты составляет f = 3.15 см, что больше максимально допустимого. Значение максимально допустимого прогиба определяется согласно СНиП 2.01.07-85 «Нагрузки и воздействия». Так для плиты перекрытия в жилом доме длиной 5.6 м, если под ней нет перегородок, максимально допустимый прогиб составляет fu = l/200 = 560/200 = 2.8 см.

Между тем, если рассчитать эту же плиту на прочность согласно требований того же СП 52-101-2003, то требуемая площадь арматуры (согласно формул 3.2 и 3.3 указанного СП) составит Аs = 4.67 см 2 , т.е. почти в 1.6 раза меньше.

Как же быть в этом случае? Неужели и дальше штурмовать обледенелые вершины знаний, накопленных в соответствующих нормативных документах, или есть все-таки более простая и короткая дорога к цели? На мой взгляд есть, но это всего лишь мое личное мнение.

Приводимый ниже расчет не совсем соответствует рекомендациям СНиП 2.03.01-84 и СП 52-101-2003, тем не менее позволяет приблизительно определить значение прогиба по упрощенной методике. И хотя шарнирно опертая безконсольная однопролетная балка c прямоугольной формой поперечного сечения, на которую действует равномерно распределенная нагрузка — это частный случай на фоне множества возможных видов нагрузок, расчетных схем и геометрических форм сечения, тем не менее это очень распространенный частный случай в малоэтажном строительстве.

Пример расчета деформации железобетонной плиты, как балки переменного сечения

Прогиб плиты при выбранной расчетной схеме составит

f = k5ql 4 /384EIp (321.1)

Как видим, формула достаточно проста и отличается от классической наличием дополнительного коэффициента. Коэффициент k учитывает изменение высоты сжатой области сечения по длине балки при действии изгибающего момента. При равномерно распределенной нагрузке и работе бетона в области упругих деформаций значение коэффициента для приближенных расчетов можно принимать k = 0.86. Использование этого коэффициента позволяет определять прогиб балки (плиты) переменного сечения, как для балки постоянного сечения с высотой hmin. Таким образом в приведенной формуле остается только 2 неизвестных величины — расчетное значение модуля упругости бетона и момент инерции приведенного сечения Ip в том месте, где высота сечения минимальна. Остается только определить этот самый момент инерции, а модуль упругости примем равный начальному.

Для наглядности дальнейший расчет будет произведен для упоминавшейся выше плиты.

Теоретические предпосылки и допущения, принимаемые при определении прогиба ж/б плиты, работающей в области упругих деформаций

1. Так как соотношение длины плиты к высоте l/h = 560/20 = 28, т.е. значительно больше 10, то влияние поперечных сил на прогиб можно не учитывать.

2. Балка (плита) состоит из материалов, имеющих различные модули упругости, поэтому нейтральная линия — ось балки будет проходить не через центры тяжести поперечных сечений, а будет смещена и будет проходить через приведенные центры тяжести. Положение приведенных центров тяжести будет зависеть от соотношения модулей упругости бетона и арматуры.

3. Так как модуль упругости стали значительно больше начального модуля упругости бетона, то при рассмотрении геометрических параметров поперечного сечения плиты, как некоего единого сечения, площадь сечения арматуры следует умножить на отношение Еs/Eb. Для плиты это соотношение составит as1 = 2000000/245000 = 8.163

Определение момента инерции приведенного сечения

4. На приопорном участке плиты из-за малого значения внутренних нормальных напряжений на растяжение будет работать вся нижняя часть сечения, т.е. и бетон и арматура. Так как момент инерции условно сжатого сечения (материал — бетон), должен быть равен моменту инерции условно растянутого сечения (материалы бетон и арматура), то при прямоугольной форме поперечного сечения (постоянном значении ширины b по всей высоте сечения), моменты инерции для условно сжатого и условно растянутого сечения относительно приведенной нейтральной оси составят:

Iс = Wcy = 2by 3 /3 = b(2y) 3 /12 = Iр = 2b(h — y) 3 /3 + 2As(ho — y) 2 Es/Eb (321.2.1)

из чего можно вывести следующее кубическое уравнение:

у 3 = (h — y) 3 + 3As(ho — y) 2 Es/bEb (321.2.2)

Примечание: собственный момент инерции для стержней арматуры в виду малого его значения для упрощения расчетов мы не учитываем.

Решение этого уравнения для рассматриваемой плиты даст следующий результат уо = 10.16 см, что в принципе логично при общей высоте балки h = 20 см. В принципе, для приближенных расчетов значение высоты сжатой зоны на участках без трещин можно вообще не определять, так как при предлагаемом методе расчета значение высоты сжатой зоны на участках без трещин нужно только для оценки изменения высоты сечения по длине балки (на основании этого изменения и принимается значение коэффициента k)

5. Посредине плиты, где в результате действия максимальных нормальных напряжений трещины будут максимальными, на растяжение будет работать только арматура, работой бетона из-за малой высоты растянутой зоны сечения бетона можно пренебречь. При разнице сопротивлений бетона сжатию и растяжению в 10 раз, разница высот сжатой и растянутой зоны бетона в результате образования трещин также будет составлять 10 раз. При этом разница в моментах инерции для таких частей сечения будет составлять 10 3 раз.

6. Моменты инерции для частей сечения посредине плиты составят:

из чего можно вывести следующее кубическое уравнение:

Решение этого уравнения для рассматриваемой плиты даст следующий результат уl/2 = 6.16 см.

Примечание: Иногда, если значение у с точностью до сотых долей миллиметра вас не интересует, а решение кубических уравнений вызывает определенные проблемы, то можно подобрать приближенное значение у за 2-5 минут, подставляя то или иное значение в уравнение (321.2.4) и смотря на результаты правой и левой части.

7. Использование этого значения высоты сжатой зоны для дальнейших расчетов будет корректным при работе бетона в области упругих деформаций (рис. 321.а). Если в сжатой зоне в результате деформаций будет происходить перераспределение напряжений (рис.321.1.б), то высоту сжатой зоны при данной методике расчета следует уменьшить:

Рисунок 321.1

8. Определим высоту сечения, минимально допустимую расчетами на прочность без учета пластических деформаций.

Так как расчет прочности может производиться из условия

M/W ≤ Rb; W ≥ M/Rb = ql 2 /8Rb = 7·560 2 /(8·85) = 3228.23 см 3 (321.3.1)

W = 2by2 2 /3 (222.1.5.1)

то деформации в сжатой зоне бетона будут упругими при

y2 = (3W/2b) 1/2 = (3·3228.23/200) 1/2 = 6.96 см (321.3.2)

9. Так как высота сжатой зоны бетона в процессе деформации будет меньше высоты, необходимой для линейно изменяющегося распределения нормальных напряжений по высоте (разница показана на рисунке 321.1.б белым прямоугольником) , то это приведет к перераспределению нормальных напряжений (подобное перераспределение показано на рисунке 321.б) достаточно условно). В итоге площадь эпюр в обоих случаях будет одинаковой (так как значение изгибающего момента не меняется), а высота зоны упругих деформаций еще уменьшится на у2 — у. Таким образом расчетное значение высоты приведенного сечения составит:

hmin = ур = у — (у2 — у) = 6.16 — (6.96 — 6.16) = 5.36 см (321.4)

10. Расчетный момент инерции составит

Ipасч = 2byp 3 /3 = 2·100·5.36 3 /3 = 10266 см 4 (321.5)

11. Значение прогиба при полной нагрузке составит

f = 0.86·5·7·560 4 /(384·245000·10266) = 3.065 см (321.6)

12. Требование СНиП 2.01.07-85:

f = 3.065 см ≤ fu = 2.8 см (321.7)

не соблюдено. А это означает, что для соблюдения требований нужно или увеличивать класс бетона, или увеличивать сечение арматуры, или увеличивать высоту сечения. Впрочем, все это прямого отношения к расчету на прогиб не имеет.

Примечание: Один из недостатков приведенного выше способа определения прогиба состоит в в том, что при расчетах мы не учли возможное изменение модуля упругости при длительном действии нагрузки и различных других факторах. Нельзя сказать, что более точный учет модуля упругости внесет страшное смятение в стройные ряды прогиба, тем не менее, расчет с учетом уточненного значения модуля упругости будет более точным.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Скажите пожалуйста, если считаем прогиб плиты перекрытия, шарнирно опертой по контуру, можно ли в формуле для f выделить момент и подставлять m1? f=m1*l1^2*0,86*5*8/384*E*I?

Вообще-то при расчете прогиба плиты, шарнирно опертой по контуру и рассматриваемой как пластина, проще пользоваться соответствующими коэффициентами, посмотрите статью «Таблицы для расчета пластин, шарнирно опертых по контуру». А формула, которую вы вывели, не правильная, вывести ее намного сложнее.

Я вот никак не пойму Еs/Eб в каких у вас еденицах, я беру эти данные в таблице например для Еб=245*10 в минус 3 степени (кгс/см2 ) = 0,245 (кгс/см2 ). То же самое с Es Вобщем соотношение не получается никак. Я уже голову поломал

Вы просто не правильно поняли смысл табличных данных. Чтобы не писать в каждой ячейке по три ноля дополнительно, тем самым превращая таблицу в слишком громоздкую и тяжелую для восприятия, значение модуля упругости дается заниженным в 1000 раз. И это не я придумал, такой прием очень часто встречается в технической литературе. Таким образом, чтобы определить необходимое значение модуля упругости, нужно табличное значение не разделить, а умножить на 1000 (и еще на 10.2, чтобы перейти от МПа к кгс/см^2, если есть такая необходимость).

Читайте также  Краска для цемента порошок

мне помогло в написании диплома, спасибо

Огромное спасибо автору , но в 1915 году я считал фундамент своего дома, в связи со слабым основанием, слабые грунты, устроил буронабивные сваи и растверк. Расчёты делал из старых записей, которые утеряны, но помню коэффициент армирования был более 0,03% , я применил 6ф14 А500с и хомуты из А-1 ф8 с шагом 200 мм на бетон М200, сечение 500х800 под 2х этажный кирпичный дом, сборные пустотные перекрытия.Потом построил другу 2х этажный но устроил на монолитной подушке 700х250 8ф14 на таких-же грунтах,с подвалом полным Н=3м , и в завершающей части ундамента каркас 4ф14 420х420 по всей ленте фундамента .Пока Бог милует.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Определение технического состояния монолитной плиты перекрытия в связи с образованием прогибов

Содержание

  1. Введение
  2. Результаты исследований
  3. Междуэтажное перекрытие
  4. Классификация выявленных дефектов
  5. Выводы
  6. Результаты инструментального контроля
  7. Результаты исследования прочности бетона

Введение

Основание для проведения обследования.

Время проведения обследования.

Работы по инженерно-техническому обследованию здания произведены в феврале 2018г.

Монолитная плита перекрытия.

Элементы, подлежащие обследованию.

Определение технического состояния монолитной плиты перекрытия, в соответствии с СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».

Целями обследования являются:

Выполненный комплекс работ.

По результатам обследования составлено заключение о техническом состоянии несущих конструкций покрытия здания, включающее в себя:

Инструментальное обеспечение обследования, методика проведения испытаний.

Съемка геометрических параметров и прочностных характеристик конструкций выполнена приборами:

Использованная при обследовании проектная, исполнительная, эксплуатационная и другая документация.

Все работы выполнены в соответствии с ГОСТ Р 31937-2011 «Здания и сооружения. Правила обследования и мониторинга технического состояния» и СП 13-102-2003 «Правила обследования несущих строительных конструкций зданий и сооружений».

Классификация технического состояния конструкций приведена в соответствии с ГОСТ Р 31937-2011, для оценки технического состояния предусмотрено четыре категории, характеризующие состояние конструкций здания:

Нормативное техническое состояние: Категория технического состояния, при котором количественные и качественные значения параметров всех критериев оценки технического состояния строительных конструкций зданий и сооружений, включая состояние грунтов основания, соответствуют установленным в проектной документации значениям, с учетом пределов их изменения.

Работоспособное техническое состояние: Категория технического состояния, при которой некоторые из числа оцениваемых контролируемых параметров не отвечают требованиям проекта или норм, но имеющиеся нарушения требований в конкретных условиях эксплуатации не приводят к нарушению работоспособности, и необходимая несущая способность конструкций и грунтов основания, с учетом влияния имеющихся дефектов и повреждений, обеспечивается.

Ограниченно-работоспособное техническое состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, при которой имеются крены, дефекты и повреждения, приведшие к снижению несущей способности, но отсутствует опасность внезапного разрушения, потери устойчивости или опрокидывания, и функционирование конструкций и эксплуатация здания или сооружения возможны либо при контроле (мониторинге) технического состояния, либо при проведении необходимых мероприятий по восстановлению или усилению конструкций и (или) грунтов основания и последующем мониторинге технического состояния (при необходимости).

Аварийное состояние: Категория технического состояния строительной конструкции или здания и сооружения в целом, включая состояние грунтов основания, характеризующаяся повреждениями и деформациями, свидетельствующими об исчерпании несущей способности и опасности обрушения и (или) характеризующаяся кренами, которые могут вызвать потерю устойчивости объекта.

Результаты исследований

Междуэтажное перекрытие

1.1. Конструкция перекрытия

Монолитная железобетонная плита толщиной 140мм. Рабочее армирование плиты выполнено из арматурных сеток, которые уложены по верхнему и нижнему контуру армирования плиты.

Защитный слой бетона от нижней грани плиты до стержней 50мм. Расстояние между верхней и нижней сетками армирования 100мм. Проектный класс бетона В15.

Нижняя сетка армирования выполнена из арматурных стержней диаметром 16мм класс А500. Стержни уложены в продольном и поперечном направлении с шагом 200мм.

Конструктивная схема плиты: монолитная плита перекрытия с заделкой в кирпичные стены по периметру плиты. Плита опирается на внутренние продольные и поперечные стены, а также наружные стены, образуя ячейки опертых по контуру плит, с соотношением сторон l2/l1 Общий вид обследуемой плиты перекрытия

Классификация выявленных дефектов

  1. Прочность бетона монолитного перекрытия не соответствует проектному классу бетона В15(М200).
  2. При проведении зондажей выявлено, что имеются участки с порами, что свидетельствует о нарушении технологии укладки бетона в части отсутствия вибрационного уплотнения бетонной смеси.
  3. При обследовании произведён замер прогибов, в соответствии с СП 20.13330.2011 величина вертикальных прогибов для конструкций:
  • Монолитной плиты в осях И-М/3-4, пролётом 7,32м, по оси Х и 7.095м, по оси Y, не должен превышать 36,6мм и 35,48мм. По факту замеренный прогиб равен 36мм и 83мм.
  • Монолитной плиты в осях Н-М/3’-4’, пролётом 6,31м, по оси Х и 3.865м, по оси Y, не должен превышать 31,55мм и 19,325мм. По факту замеренный прогиб равен 36мм и 40мм.

Зафиксированные прогибы в местах дефектов, в плите перекрытия, превышают максимально допустимые значения по СП 20.13330.2011.

  1. Обнаруженные дефекты – сверхнормативные прогибы, свидетельствуют о снижении несущей способности плиты и непригодности к дальнейшей эксплуатации.
  2. В соответствии с СП 13-102-2003 техническое состояние существующей монолитной плиты классифицируется как ограниченно-работоспособное. Для восстановления несущей способности требуется усиление конструкции. До проведения усиления необходимо ограничение нагрузок на плиту перекрытия.

Исследование плиты ультразвуковым методом

Выводы

В результате проведенного детального визуально – инструментального обследования технического состояния монолитного перекрытия жилой квартиры, расположенной по адресу. можно сделать следующие выводы:

  1. В соответствии с СП 13-102-2003 и ГОСТ Р 31937-2011, техническое состояние существующих железобетонных монолитных плит в осях И-М/3-4 и Н-М/3’-4’ оценивается как ограниченно-работоспособное. При проведении обследования выявлены следующие дефекты:
  • недопустимые прогибы, которые превышают предельно допустимое значение по СП 20.13330.2011 на 47,525 мм для плиты в осях И-М/3-4 и 15,52мм для плиты в осях Н-М/3’-4’.

В соответствии с нормативной и справочной документацией наличие прогибов 1/150 – 1/100 от пролета плиты приводят к снижению несущей способности плиты, и вызывает растрескивание стяжек полов и перегородок, расположенных на плите.

В соответствии с ГОСТ Р 31937-2011 наличие прогибов, превышающих нормативные значения СП 20.13330.2011, свидетельствуют о перегрузе конструкции (недостаточной несущей способности от проектных нагрузок и собственного веса плиты и конструкции пола). Прочность бетона плиты, менее проектного значения В15. Толщина монолитной плиты равна 140мм и не соответствует проектному значению в 200мм.

В соответствие с классификатором дефектов в строительстве, дефект в виде отклонения от проектных размеров (сечений) и несоответствие марки бетона проектному значению классифицируется как критический.

В соответствии с классификатором дефектов в строительстве (извлечение):

Критический дефект (при производстве конструкций и изделий)

— дефект, при наличии которого изделие, конструкция функционально непригодны и его использование по назначению может повлечь потерю или снижение прочности, устойчивости, надежности здания, сооружения, его части или конструктивного элемента.

Критический дефект подлежит безусловному устранению до начала последующих работ или с приостановкой начатых работ.

  1. В связи с критическим состоянием плиты перекрытия, она непригодна для эксплуатации. Для дальнейшей нормальной эксплуатации необходимо выполнить мероприятия для восстановления несущей способности плиты. Усиление плит перекрытия рекомендуется выполнить по одному из вариантов:

А) Для повышения жесткости плиты рекомендуется произвести устройство монолитных железобетонных ребер жесткости, сечением 160мм х 150мм (h), по верху плиты, по оси И-М/3-4 и монолитной балки сечением 350(h) х 200мм, с нижней стороны плиты, по оси М/3-4, произвести наращивание сечения с 140 до 200мм торкрет – бетоном класса В30 по нижней поверхности плиты. При выполнении данного варианта усиления необходимо произвести штробы в существующей стяжке пола, установить арматурный каркас из 2-х продольных арматурных стержней А500, диаметром 16мм, и поперечных стержней из арматуры А400 диаметром 8мм, с шагом 200мм в пролете и 100мм на расстоянии 1000мм от границ плиты. Арматурный каркас необходимо связать со стержнями плиты при помощи хомутов, из стержней А500, с шагом 600мм. Шаг ребер жесткости принять 2000мм.

Ребра также должны быть устроены по контуру плиты, около стен здания, и по осям 3-М/Н, 4-М/Н и И-3/4. Устройство ребер выполнить в направлении буквенных осей. При устройстве монолитной балки по оси М/3-4 арматурный каркас выполнить из 3-х продольных стержней А500, диаметром 16мм, и поперечных стержней диаметром 10мм с шагом 200мм и 100мм у опор, на расстоянии 1000мм.

Бетонирование балки произвести при помощи бетононасоса, через просверленные в плите отверстия диаметром 125-150мм. Работы должны производиться с обязательным устройством временных подпорок под перекрытие.

Б) Произвести устройство монолитных балок по низу плиты, по оси И-М/3-4 и монолитной балки с нижней стороны плиты, по оси М/3-4, произвести наращивание сечения до 200мм торкрет – бетоном по нижней поверхности плиты. Армирование и сечение принять как в варианте А. Бетонирование балок произвести при помощи бетононасоса бетоном класса В30, через отверстия диаметром 125-250мм, устроенные в плите перекрытия.

В) Произвести установку стальных балок под существующую плиту, по оси И-М/3-4, вдоль буквенных осей, с шагом 2000мм, с заделкой в существующие кирпичные стены, и установку балки в осях М/3-4 под плиту, по осям Н-М/3’-4’. Конструкцию опорных частей балок на стены принять по типовой серии 2.440. В качестве балок принять широкополочный двутавр 30Ш2.

  1. Работы по усилению плиты выполнять по специально-разработанному проекту усиления и проекту производства работ.

Исследование плиты ультразвуковым методом

Результаты инструментального контроля

Геодезическая съемка отклонений (прогиба) плиты

Железобетонные каркасы

от admin

При выявлении трещин в перекрытиях определяется их характер и измеряется ширина раскрытия.

При визуальном осмотре выявляют трещины на поверхности потолков, а расположение их фиксируют на схематическом плане. При этом определяется их характер, а также направление – вдоль или поперек пролета, по ребрам или вблизи них (в ребристых панелях можно с помощью прибора ИСМ по расположению рабочей арматуры определить местоположение ребер).

ВАЖНО. Перекрытия здания, сдаваемого в эксплуатацию, не должны иметь трещин, ширина раскрытия которых превышает 0,3 мм.

При обнаружении на поверхности панелей сетки усадочных трещин, а также трещин в средней части поперек рабочего пролета плиты шириной более 0,3 мм необходимо установить причину их появления и оценить степень опасности для дальнейшей эксплуатации.

При появлении трещин осматривают все потолки каждой обследуемой квартиры. При наличии усадочных трещин (в виде сетки) или трещины вдоль рабочего пролета плит делается 4–5 замеров ширины раскрытия трещин в наиболее заметных на глаз участках.

В случае обнаружения трещин поперек рабочего пролета необходимо указать их длину и измерить ширину раскрытия через каждые 30–50 см по длине.

Для оценки деформативности плит перекрытий необходимо определить прогиб относительно участков их опирания на несущие стены. При применении геодезических приборов определяется отклонение поверхности плиты от горизонтальной плоскости, проведенной через ось трубы нивелира.

Разность отметок опорных участков плиты и ее середины в направлении пролета плиты, отнесенная к длине пролета, и составляет искомый относительный прогиб.

При измерениях можно пользоваться нивелиром, оптической насадкой к нивелиру, рейкой со светящейся шкалой или гидростатическим нивелиром.

Нивелир устанавливают в углу помещения или в дверном проеме с целью определения с одной стоянки отметок наибольшего числа точек. Для крупноразмерных плит «на комнату» определяют отметки в трех сечениях вдоль рабочего пролета плиты по три точки в каждом сечении (рис. 1, а).

Для определения прогиба плит шириной 1 – 1,5 м (типа многопустотного настила) отметки определяют в среднем сечении вдоль рабочего пролета в трех точках (на опорах и в средней части; рис. 1, б).

Рис. 1. Схема измерения прогибов перекрытий: а –плита «на комнату»; б – настилы

Рейка в вертикальном положении помешается в намеченные точки потолка таким образом, чтобы опорный шарик касался этой точки. В каждой точке отсчеты берутся два раза и вычисляется средняя величина.

Прогиб определяется относительно сторон опирания плиты перекрытия на несущие стены, чем исключается влияние на результаты измерений разности отсчетов по крайним точкам.

На рис. 1 приведен пример опирания плиты перекрытия на разных отметках. Принимая отсчеты в точках А и В за нулевые, определяют прогибы плиты относительно прямой АВ, соответствующей профилю непрогнувшейся панели. Полученный прогиб, отнесенный к рабочему пролету плиты составит относительный прогиб.

При измерении прогибов с помощью гидростатического нивелира начальный отсчет берется в точке перекрытия у опоры, а затем (при постоянном положении базовой трубки нивелира) мерную трубку помещают в точки плиты, как указано выше.

Вычисление прогиба производится также относительно прямой, проведенной через точки опоры плиты в измеряемом сечении.

Максимальный относительный прогиб в середине рабочего пролета плиты с учетом действия неполной нормативной нагрузки в незаселенном доме (отсутствует полезная нагрузка), а также небольшого срока ее действия не должен превышать 1/400 пролета.
Прогибы определяют для каждой плиты всех обследуемых квартир.