Требования к фундаментам под оборудование

Фундамент для токарного станка — излагаем во всех подробностях

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Фундамент, описание технологии подготовки фундамента для токарных станок с ЧПУ

Общие требования к фундаменту.
Фундамент служит основанием станка, обеспечивающим максимальное использование его возможностей по производительности и точности в течении длительного срока, исключающим влияние станка на работу соседнего оборудования. Для этого необходимо чтобы фундамент при удобном размещении и прочном закреплении станка отвечал требованиям обеспечения уровня колебаний, передаваемых от станка. Жесткость закрепления станка на фундаменте оказывает существенное влияние на точность станка при резании. Основное требование, предъявляемое к установке на фундамент высокоточного станка, является обеспечение надежной защиты от колебаний по полу на фундамент, то есть устройство виброизоляции.
Фундамент для станка должен быть изготовлен в соответствии со строй заданием на фундамент, указанном в документации на станок.
Крепёжные детали (анкерные болты) для установки станка на фундамент поставляются со станком или должны быть изготовлены покупателем станка согласно прилагаемой документации.

Требования к основанию

Фундамент для установки технологического оборудования, включая станки по механической обработке твердых материалов, несмотря на необходимость проведения индивидуального расчета в конкретных условиях эксплуатации, должен соответствовать СНиП 2.02.05-87.

Общие правила по устройству опор для машин, создающих динамические нагрузки, формулируются так:

  1. Массивность. Чем больший вес имеет основание, тем выше его способность сопротивляться вибрациям станка.
  2. Высокая прочность и жесткость. Устойчивость к постоянным и переменным нагрузкам прямо пропорционально влияет на срок эксплуатации оборудования на этом фундаменте. Жесткое крепление важно для высокоточных станков.
  3. Повышенная устойчивость к агрессивным воздействиям (ГСМ, охлаждающие эмульсии, растворители). Необходимо обеспечивать максимальную инертность хотя бы для верхнего слоя монолита.

Такие характеристики нужны фундаменту в комплексе с выдержкой минимально допустимых отклонений по его расчетным габаритам.

В зависимости от массы станка (до 10 т или более) и класса точности разрешается применять под них различные по конструкции основания (общие, одиночные, вибро-изолированные). Вертикальные разрезы таких опор показаны на чертеже:

Ставить 1 шлифовальный станок или группу можно на утолщенные ленты, специально заливаемые в полу цеха, как показано на этом фото:

При монтаже станков на 2 этаже и выше используют рамный или стенчатый тип бесподвального фундамента. У них нагрузка распределяется через каркас на перекрытия или несущие стены (опорные колонны). Вибрация, создаваемая станком, для такой опоры должна быть минимальная. Устанавливая фрезерный агрегат, можно применить демпферы, гасящие частотные колебания.

Уклон верхней плоскости крепления оборудования категорически не допускается.

В противном случае будет неравномерное распределение эксплуатационных нагрузок, что влияет на характеристики работающего станка, оказывает разрушающее воздействие на станину механизма и анкеры в основании.

Технические условия на изготовление фундамента

Для станков нормальной точности:
Несущая способность грунта 5кг/м2. При необходимости фундамент нагрузить дополнительной нагрузкой (бетонными блоками, блюмсами и т.п.), превышающей массу станка в 3-4 раза и ежедневно до окончания усадки проверять нивелиром высотные отметки по реперу, не связанному с фундаментом.

Для станков повышенной точности:
Фундамент должен выполняться со свободными боковыми гранями и применяться тяжелый бетон проектных марок по прочности на сжатие 150-200 кг/см2. Для заливки фундамента применять бетонную смесь с объёмным соотношением цемент-песок- щебень 1:1:3 (марка бетона не ниже М250).
Глубина фундамента Н > 0,6 √F, где F — площадь фундамента.
Фундамент армируется единой решёткой по длине, ширине и высоте с величиной ячейки 200 мм. Диаметр арматуры зависит от величины фундамента и может быть от 12 мм до 20 мм.

Прочность бетона фундамента.
Монтаж станка может быть допущен при достижении бетоном прочности на сжатие не ниже 50% проектной (примерно соответствует семидневному бетону). К моменту пуска станка прочность бетона должна быть не ниже 70% проектной (примерно соответствует 15 дневному бетону). Срок полного твердения бетона – 28 дней.
Качество бетона контролируют по прочности контрольных кубиков 200х200х200 мм.
Прочность бетона в готовом фундаменте может быть грубо оценена по звуку и ударам.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Допустимые отклонения от стройзадания

Стройзадание является проектным заданием для разработки фундамента и определяет конструкцию только верхней части. Верхняя часть, поверхность для установки станка должна быть ровной, «гладкой», без уклонов и выпуклостей.
Допустимые отклонения:
— установочных поверхностей на фундаменте, возведенных до проектной от
По плоскости в любом направлении +-0,2/500 мм
По высоте -5 мм
По уклону 1/1000 мм
Строители обычно творчески относятся к изготовлению фундамента, требования на чертежах не читают — а делают по сантиметровым строительным допускам.
Внимание. Станок, установленный на полу при отсутствии фундамента без выверки по уровню и без крепления к полу, через короткое время теряет свою точность, изнашиваются направляющие и в результате станок требует ремонта.
Подготовительные работы с опорами.
Подготовка клиновых башмаков заключается в снятии консервационной смазки, краски и грязи с рабочих поверхностей, особенно обратить внимание на наклонные и прилегающие к станине.
Смазка наклонных поверхностей консистентной смазкой. Установка клиновых башмаков в крайнее нижнее положение.
Монтаж станка.
Очистить нижнюю поверхность станины станка от консервации и грязи, особенно места прилегания клиновых башмаков.
Установить станину станка на четыре вспомогательные опоры, расположенные по углам станины между анкерными колодцами фундамента, согласно документации так, чтобы отверстия в станине совпадали с центрами анкерных болтов в анкерных колодцах фундамента. Высота вспомогательных опор должна быть на 5 мм меньше высоты клиновых башмаков в нижнем положении.
Собрать всю структуру станка (стойка, стол, шпиндельная бабка, магазин инструментов, телескопическая защита) и часть кабинета, которая не будет мешать заливке бетоном анкерных колодцев.

Установка и выверка станка.
Установить стол станка по центру перемещений. Используя станочный уровень, установленный в центре стола в двух взаимно перпендикулярных положениях, выставить станок на четырёх вспомогательных опорах с точностью 0,1/1000 мм с помощью домкрата и стальных прокладок толщиной 0,5 – 1 мм.
Используя анкерные болты с приваренными шайбами для поддержки клиновых башмаков, привернуть все клиновые башмаки к станине станка (см. чертёж). Площадь в плане анкерного колодца должна быть больше площади клинового башмака. Клиновые башмаки должны быть в нижнем положении. Залить анкерные колодцы водой для пропитки фундамента вокруг колодцев. Выдержать с водой 8 часов.
Заполнить анкерные колодцы малоусадочным бетоном марки не ниже М300. Уплотнить вибратором и подлить вручную бетон под клиновые башмаки так, чтобы он стоял на щебне бетона и был залит по всей нижней поверхности башмака.
Выдержать залитый в анкерные колодцы бетон 4 дня постоянно влажным для лучшего затвердевания.
Ослабить крепёжные гайки на анкерных болтах. Поднять станок с помощью клиновых башмаков, чтобы убрать вспомогательные опоры.
После 7 дней выдержки бетона, залитого в анкерные колодцы, можно выставить станину станка в горизонтальной плоскости в соответствии с сертификатом качества на данный станок с помощью домкрата, клиновых башмаков и станочного уровня 0,02/1000 мм.
Верх фундамента между клиновыми башмаками заровнять цементным раствором и «зажелезнить». Окончательно затвердевший и выдержанный фундамент покрасить маслостойкой краской для предохранения от разрушающего действия масла и СОЖ.
Произвести затяжку гаек на анкерных болтах динамометрическим ключом с моментом, указанном в таблице. При этом, следить за тем, чтобы уровень не изменял показаний при равномерном затягивании гаек.

Фундаменты для фрезерных станков, обрабатывающих центров, расточных и шлифовальных станков могут сильно отличаться по конфигурации и требованиям, будут рассмотрены в дальнейших статьях

ВСН 361-85: «Установка технологического оборудования на фундаментах»

(утв. Минмонтажспецстроем СССР 22 марта 1985 г.)

ВСН 361-85 скачали 2810 человек

Текст документа

Ведомственные строительные нормы ВСН 361-85
«Установка технологического оборудования на фундаментах»
(утв. Минмонтажспецстроем СССР 22 марта 1985 г.)

Взамен ВСН 361-76

Срок введения в действие 1 июля 1985 г.

подготовке и производстве работ

применяемых для выравнивания поверхностей фундаментов

1. Вводная часть

1.1. Настоящие ведомственные строительные нормы распространяются на монтаж технологического оборудования промышленных предприятий и устанавливают требования к проектированию, производству и приемке работ по установке машин, механизмов и аппаратов (или их базовых деталей, узлов и блоков) в проектное положение на фундаментах.

1.2. Требования ВСН не распространяются на установку оборудования без закрепления фундаментными болтами, а также на установку оборудования с использованием подкладок, высоту которых регулируют в процессе эксплуатации, или специальных (вибро-, электро- и теплоизолирующих) опор.

1.3. Настоящие ВСН разработаны на основе и в дополнение к СНиП 3.05.05-84 и относятся к технологическому оборудованию.

1.4. Требования ВСН обязательны для организаций Минмонтажспецстроя СССР, осуществляющих проектирование, подготовку и производство работ по монтажу оборудования, а также для строительных организаций, выполняющих работы по подливке оборудования. Требования ВСН следует учитывать при проектировании промышленных объектов и разработке конструкторской документации на оборудование, включая инструкции по эксплуатации (монтажу).

2. Общие положения

2.1. Поставляемое предприятиями-изготовителями оборудование должно быть технологичным с точки зрения монтажа (ГОСТ 14.201-83). При этом должны быть соблюдены монтажно-технологические требования, изложенные в ГОСТ 24444-80, отраслевых стандартах, разработанных в его развитие, и СНиП 3.05.05-84.

2.2. Сопроводительная техническая документация на оборудование (комплектность по ГОСТ 24444-80) должна содержать сведения о порядке монтажа поставляемых изделий, нормы точности на установку оборудования, технологические решения по выполнению монтажных работ и др., как это предусмотрено ГОСТ 2.109-73 и ГОСТ 2.601-68*.

Взамен ГОСТ 2.601-68 постановлением Госстандарта РФ от 29 февраля 1996 г. N 130 с 1 июля 1996 г. введен в действие ГОСТ 2.601-95

При разработке инструкций по эксплуатации (монтажу) рекомендуется в качестве типовых, практически проверенных способов и средств установки оборудования (в соответствии с требованиями ГОСТ 2.601-68* и ГОСТ 14.201-83) использовать способы и средства, изложенные в настоящих ВСН.

2.3. При проектировании промышленных объектов, организации и выполнении строительных работ должна быть обеспечена возможность установки и подливки оборудования, в том числе:

предусмотрен зазор между опорной частью оборудования и поверхностью фундаментов;

определены и выдержаны при производстве работ размеры фундаментов с учетом требований к установке фундаментных болтов и подливке оборудования;

в соответствии со схемами геодезического обоснования монтажа осуществлена установка геодезических знаков, используемых при выверке оборудования;

исключены причины, вызывающие недопустимую осадку фундаментов.

2.4. Работы по установке оборудования на фундаментах следует выполнять в соответствии с утвержденными или согласованными по установленной форме рабочей и проектно-сметной документацией, проектом организации строительства, проектом производства работ и документацией предприятий-изготовителей оборудования.

Наряду с требованиями настоящих ВСН и технической документации заводов-изготовителей следует руководствоваться нормативными документами и стандартами, приведенными в рекомендуемом приложении 1.

2.5. Организации Минмонтажспецстроя СССР в процессе подготовки производства работ (на стадиях проектирования и изготовления оборудования, проектирования промышленных объектов, организации и выполнении строительных работ) при согласовании технической документации в установленном порядке должны осуществлять контроль за соблюдением требований пп. 2.1; 2.2 и 2.3.

Состав и требования к документации, передаваемой монтажной организации, а также порядок взаимоотношений с заказчиком и генеральным подрядчиком — по СНиП 3.05.05-84.

3. Подготовка к производству работ

3.1. Подготовка к производству работ должна включать в себя комплекс мероприятий по технологическому и организационно-техническому обеспечению монтажа оборудования. Состав и содержание мероприятий по организационно-техническому обеспечению монтажа — по СНиП 3.05.05-84.

Читайте также  Как пристроить фундамент к существующему?

3.2. Технологическое обеспечение монтажа оборудования должно быть направлено на создание условий для достижения требуемой точности установки оборудования на месте эксплуатации с наименьшими трудовыми и материальными затратами. Мероприятия по технологическому обеспечению следует осуществлять как на стадии проектирования и изготовления оборудования, так и при разработке технологической документации в составе ППР (технологические схемы и карты).

3.3. При подготовке производства работ по установке оборудования должны быть обеспечены:

преобладающее использование способов установки оборудования без остающихся в массиве подливки пакетов металлических подкладок, включая широкое применение регулировочных винтов оборудования;

возможность применения технологии «безвыверочного» монтажа;

достоверность и точность контроля положения устанавливаемого оборудования по всем заданным показателям точности;

собираемость соединений «оборудование-фундамент» без дополнительных пригоночных работ по исправлению положения фундаментных болтов;

преимущественное применение конструкций фундаментных болтов, устанавливаемых в просверленные в готовых фундаментах скважины (по ГОСТ 24379.0-80 и ГОСТ 24379.1-80).

Мероприятия по реализации изложенных требований приведены в рекомендуемом приложении 2.

3.4. При разработке ППР (форма задания на разработку, состав и содержание — по ВСН 319-77), технологических схем или карт применяемые технологические решения по установке оборудования в проектное положение на фундаментах должны основываться на требованиях и указаниях технической документации предприятий-изготовителей и включать в себя следующие сведения:

способы и средства установки оборудования, в том числе данные по типам, размерам и местам расположения опорных элементов (схемы установки опорных элементов приведены в рекомендуемом приложении 3);

методы и средства контроля точности положения выверяемого оборудования с указанием используемых баз и производственных монтажных допусков;

допуски на высотное положение опорных элементов с учетом используемых методов обеспечения заданных показателей точности установки оборудования (допуски рекомендуется назначать в соответствии с приложением 2);

усилия (крутящие моменты) затяжки фундаментных болтов, средства для контроля усилий закрепления, рекомендуемый инструмент и устройства для закрепления оборудования.

При разработке документации по установке оборудования рекомендуется максимально использовать типовые технологические решения, в том числе стандартизованные, в виде ОСТ на типовые технологические процессы монтажа, ВСН и МСН по монтажу конкретных видов оборудования.

4. Производство работ

4.1. Общие положения

4.1.1. К работам по установке оборудования разрешается приступать после подписания актов готовности фундаментов (приемка фундаментов и форма актов должны соответствовать СНиП 3.05.05-84).

Перед установкой оборудования выполняют, как правило, следующие подготовительные и вспомогательные работы:

укрупнительную сборку (при необходимости);

подготовку площадок на поверхности фундаментов для установки опорных элементов. Технические характеристики механизированного инструмента для выравнивания поверхностей фундаментов при подготовке площадок под опорные элементы приведены в рекомендуемом приложении 4;

вынесение при необходимости дополнительных (рабочих) осей и отметок (при помощи струн, отвесов и т.п.).

4.1.2. Установка оборудования в проектное положение на фундаментах включает, как правило, следующие процессы и операции:

установку опорных элементов на фундаментах;

предварительную установку оборудования на опорные элементы с совмещением отверстий базовой детали (станины, рамы, основания) с фундаментными болтами;

введение оборудования в заданное положение в плане, по высоте и горизонтальности (вертикальности) путем осуществления необходимых регулировочных перемещений с контролем фактического положения и предварительной фиксацией перед подливкой;

подливка зазора «оборудование-фундамент»;

закрепление оборудования затяжкой фундаментных болтов с заданным усилием.

Требуемая точность положения оборудования по высоте и горизонтальности может быть достигнута методом безвыверочного монтажа, т.е. без использования регулировочных операций — за счет установки опорных элементов в пределах расчетных допусков (порядок расчета допусков приведен в приложении 2).

4.1.3. При выверке оборудования в плане регулировочные перемещения осуществляют с помощью грузоподъемных механизмов, домкратов и монтажных приспособлений в пределах зазоров между стенками отверстий базовой детали оборудования и стержнями предварительно установленных фундаментных болтов или в пределах зазоров колодцев под закрепляемые при подливке оборудования фундаментные болты.

4.1.4. Регулировку оборудования по высоте и горизонтальности осуществляют с использованием опорных элементов различных конструкций.

4.1.5. В зависимости от технологии установки и конструктивных особенностей соединений «оборудование-фундамент» (рис.1) различают постоянные и временные опорные элементы.

«Рис. 1. Типы соединений «оборудование-фундамент»

Применение временных опорных элементов характерно для соединений типа I (рис.1,а). При образовании этих соединений опорные элементы применяют только для регулировки положения оборудования перед его закреплением на массиве подливки.

В соединениях типа 2 (рис.1,б) используют постоянные опорные элементы как для выверки, так и закрепления оборудования. Подливка в этом случае имеет вспомогательное значение.

Соединения типа 3 (рис.1,в) применяют в случаях, когда допуски на установку оборудования по высоте сопоставимы с показателями точности изготовления фундаментов.

4.1.6. При установке оборудования на фундаментах преимущественно должны использоваться соединения типов 1 и 3 (бесподкладочный монтаж).

Соединение типа 2 рекомендуется использовать для установки на опорных элементах оборудования, требующего окончательного закрепления сразу после выверки (например, вертикальных аппаратов колонного типа).

Конструкции соединений «оборудование-фундамент» должны быть выбраны при проектировании оборудования и указаны в монтажных чертежах или инструкциях по эксплуатации (монтажу). При отсутствии таких указаний выбор типов соединений и видов опорных элементов должен быть осуществлен монтажными организациями и отражен в технологических картах или схемах.

4.1.7. В качестве постоянных опорных элементов при установке оборудования на месте эксплуатации применяют:

пакеты плоских или клиновых металлических подкладок;

жесткие опоры (бетонные подушки).

При использовании для установки оборудования пакетов или башмаков эти элементы должны быть включены в комплект поставки оборудования.

4.1.8. В качестве временных опорных элементов могут быть использованы:

регулировочные (отжимные) винты оборудования;

установочные гайки фундаментных болтов;

сокращенное количество пакетов металлических подкладок;

винтовые опорные устройства (винтовые подкладки) и др. Технические характеристики приспособлений и устройств, используемых в качестве временных опорных элементов, приведены в рекомендуемом приложении 6.

4.1.9. Выбор конструкции временных опорных элементов (при отсутствии регулировочных винтов в оборудовании) производится монтажной организацией, осуществляющей разработку технологических схем и карт.

Количество опорных элементов и их расположение по контуру оборудования следует назначать из условий обеспечения устойчивого положения выверенного оборудования на период подливки и исключения недопустимых прогибов опорных частей оборудования под действием собственной массы и усилий предварительной затяжки фундаментных болтов.

4.1.10. Площадь опирания временных шорных элементов (S , см2) на фундамент определяют из следующего соотношения:

где n — число фундаментных болтов, затягиваемых для фиксации

оборудования перед подливкой;

m — масса оборудования, кг;

F — расчетная площадь поперечного сечения фундаментных болтов,

Таблица 1

Площадь поперечного сечения фундаментных болтов

Фундаменты под динамические нагрузки

Возведение фундамента – это процесс, при осуществлении которого требуется учитывать различные нагрузки. Одним из наиболее важных моментов является устойчивость к динамическим нагрузкам, возникающим в ходе работы механического оборудования. В число причин, вызывающих появление динамических нагрузок, входят:

  • функционирование машин с неравномерно движущимися частями;
  • движение транспорта как по поверхности земли, так и под землей;
  • трамбовка грунта во время во время обустройства подушки основания здания;
  • углубление свай;
  • работа лесопильного оборудования или компрессоров и прокатных станов.

Особенности и классификация фундаментов под динамические нагрузки

Сооружение основания, предназначенного для обеспечения устойчивости к динамическим нагрузкам, необходимо при возведении промышленных зданий, в которых установлены опорные колонны, и, соответственно, фундаментов под станки. Такие фундаменты имеют ряд особенностей, учитывать которые необходимо при строительстве. В первую очередь это касается колебаний, которые приходится выдерживать основанию под станки и машины.

Конструкция фундамента под динамические нагрузки

Испытываемые колебания могут быть и статические, и динамические. Возникновение динамических нагрузок связано с колебаниями во время работы промышленного оборудования и строительной техники, проведением взрывных работ или с сильными порывами ветра. Проектирование основания осуществляется в соответствии со СНиП 2.02.05-87.

Основная цель обеспечить безопасную эксплуатацию машин, без причинения какого-либо ущерба возведенному зданию. Основания машин с динамическими нагрузками проектируют:

  1. Монолитными, где предусмотрено наличие приямков, колодцев или отверстий, в которых размещаются части оборудования.
  2. Стенными. Имеющими основание в виде ростверка, стены и верхнюю плиту, опирающуюся на колонны.
  3. Рамными, представляющими собой конструкцию из верхней плиты и балок, которые опираются на нижнюю плиту фундамента через ряд стоек.
  4. Облегченными, где опору создают колонны.

Для того чтобы успешно выдерживать довольно высокие динамические нагрузки возводимое основание должно:

  1. Обладать значительной массой, обеспечивающей устойчивость к существующим и предстоящим нагрузкам. Уровень сопротивляемости основания вибрациям напрямую зависит от его массы.
  2. Отличаться значительной прочностью, обеспечивающей долгосрочную эксплуатацию и самого оборудования, и здания, в котором оно установлено.
  3. Иметь довольно высокую инертность. Фундаменту, сооруженному под оборудование, предстоит выдержать воздействие агрессивных сред. В их число входят смазка, машинные масла и другие жидкости, оказывающие разрушающее действие на само основание и грунт.

При сооружении такого фундамента необходимо в точности следовать рекомендациям и соблюдать все установленные нормы в отношении габаритов и правил возведения основания и крепления на нем оборудования.

Важно обеспечить полное отсутствие уклона ростверка. Это гарантирует равномерное распределение нагрузки и тем самым продлит срок эксплуатации оборудования и фундамента.

Основное требование, предъявляемое к фундаментам, на которых установлено ударное или иное оборудование, заключается в соответствии стандартам безопасности труда и обеспечении эффективной защиты от вредного влияния динамических нагрузок на оборудование, установленной как на самом основании, так и в непосредственной близости от него.

Фундамент под оборудование

Для соблюдения указанных условий необходимо при возведении подобных фундаментов строго следовать нормам, установленным СНиП:

  • 2.02.01-83;
  • 2.02.03-85;
  • 2.03.01-84;

Как указывает руководство, фундаменты машин, подверженных динамическим нагрузкам сооружают в виде монолитной плиты. Они могут быть сборными и сборно-монолитным. По существующим требованиям и нормам основание под динамические нагрузки возводится монолитным железобетонным. Класс бетонной смеси, используемой для его сооружения – В15. Отличие основания под машины с динамическими нагрузками от фундаментов под жилые постройки заключается в их конструкции.

Проектирование фундаментов машин с динамическими нагрузками

Большая часть динамических нагрузок – ударное воздействие. Это может быть и одиночный импульс, и изменяющаяся внешняя нагрузка. Эти явления и вызывают свободные или вынужденные колебания.

Турбогенератор – оборудование с динамическими нагрузками

Надежные основания обустраивают для установки машин:

  • вращающихся равномерно, к числу которых относятся электродвигатели и турбогенераторы;
  • вращающихся не только равномерно, но и с поступательным и возвратным движением, а это могут быть компрессоры или двигатели внутреннего сгорания;
  • совершающих возвратно-поступательное движение одновременно с ударами.

Машины и механизмы могут оказывать на фундамент воздействие, совершая возвратно-поступательное движение, совмещенное с неравномерным вращением или передавать на основание случайные нагрузки. Для точного проектирования основания под динамические нагрузки необходим профессиональный расчет. Коэффициенты жесткости для фундаментов на естественной платформе определаются по формулам:

где kz – это коэффициент жесткости при вертикальных поступательных движениях фундамента;

А – площадь платформы;

Сz – жесткость основания при осуществлении поступательного вертикального перемещения фундамента.

При горизонтальных движениях фундаментов:

Вся работа – это несколько обязательных этапов, в ходе которых проводится расчет амплитуды колебания основания, которая должна полностью соответствовать установленной правилами. Установки значений давления под подошвой и расчет прочности всех элементов, из которых состоит фундамент.

Выбирая марку бетона для создания железобетонной конструкции, необходимо учитывать наличие воздействия на фундамент и динамической нагрузки, и статистических нагрузок, и высоких технологических температур, оказываемых в одно время. Посмотрите видео, как правильно выбрать марку бетона.

Платформа, на которой будут установлено оборудование, должна обеспечить безопасность и эффективность труда, а расчет материалов и параметров должен гарантировать продолжительный срок ее эксплуатации. Основание для проектирования подошвы, которая имеет в большинстве случаев прямоугольную форму, является правильный расчет. В первую очередь стоит сказать о том, что высота фундаментов машин предусматривается минимальная, так она тесно связана с размерами крепежных болтов и глубиной их заделки.

На данном этапе выбирается проектная марка бетона, которая в соответствии со СНиПом должна быть не менее М150 или М200. Расчет фундамента выполняется для установки как единичной модели, так и нескольких машин динамической нагрузки. Выполнение данных работ связано с определением центра тяжести и учетом волн, распространяемых в грунте при работе низкочастотных или других машин.

Сооружение фундамента под динамические нагрузки

Необходимое условие прочности сооружения – отделение фундаментов машин от оснований построек специально спроектированными швами. При проектировании фундамента машин с динамическими нагрузками в обязательном порядке принимают расчет технические характеристики, которыми обладает оборудование, амплитуда колебаний непосредственно машин и расположенных поблизости конструкций. Необходимо принимать в расчет динамические нагрузки, действующие на оборудование и крепежные болты.

При установке колонн необходимо использовать “стаканы”

Особого внимания заслуживают значения предельных колебаний всего фундамента и его частей. Оборудование, установленное на сооружаемом основании, требует наличия дополнительных подъямков или колодцев, которые также подвергаются определенным нагрузкам и испытывают колебания. Приступая к сооружению основания машин с динамическими нагрузками необходимо учесть наличие дополнительных крепежных болтов и других элементов, которым снабжено оборудование при поставке.

Машины с динамическими нагрузками устанавливают как можно дальше от объектов, обладающих повышенной чувствительностью к вибрации, к числу которых относятся опорные колонны. Установка машин на открытой площадке требует наличия данных о глубине промерзания грунта. В большинстве случаев машины с динамическими нагрузками устанавливают на мелкозаглубленном фундаменте. Если сооружение подобного основания ведется на сложном грунте, то используют свайную конструкцию, колонны в которой имеют различную глубину проникновения в грунт.

Такие колонны, как правило, делают в «стакане», который армируют и заполняют бетоном. Эти железобетонные колонны становятся надежной опорой будущего фундамента. Они надежно укрепляют грунты. Создание основания для машин с динамическими нагрузками требует поэтапного выполнения работ с учетом особенностей, которыми обладает оборудование.

Бетонирование выполняется в непрерывном режиме. При необходимости технология выполнения работ допускает сооружение рабочих швов, места нахождения которых, указаны на чертежах и установлены еще на стадии проектирования.

Выбирая место, в котором будет установлено оборудование, необходимо принять во внимание установленное расстояние от машины до той точки, где расположены опорные колонны или другое оборудование. Это расстояние не должно быть меньше одного метра от выступающих частей машины. Фундамент, на который опираются стены помещения или колонны, не может быть связан с основанием, обустроенным для машин с динамическими нагрузками. Посмотрите видео, как производится установка опорных колонн.

Определив расстояние от каждой опорной колонны, приступают к разметке, в соответствии с которой подготавливают котлован. В открытых цехах глубина котлована определяется глубиной промерзания грунта. Подсыпку делают песком, тщательно промочив и уплотнив его.

После выставления опалубки и укладки армировочной сетки на опалубку необходимо уложить шаблон. Используя отверстия, подготовленные в нем, с помощью гаек фиксируют фундаментные болты.

Заливку опалубки проводят послойно. Уплотняют каждый слой, толщина которого составляет 15 сантиметров, штыкованием. Спустя 28-30 дней проводят прочностные испытания и только после этого подписывают акт о приемке работ.

Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Требования к фундаментам под оборудование

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

  1. Устройство фундаментов под технологическое оборудование: общие правила
  2. Разновидности конструкций оснований
  3. Конструкционные материалы оснований
  4. Расчет фундамента под оборудование
  5. Основные типы
  6. Особенности устройства
  7. Допустимые отклонения от стройзадания.
  8. Вычисление нагрузок

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Основные типы

Существует следующая классификация фундаментов по нескольким основным параметрам:

  1. По конструкции (конструктивный тип): ленточный, столбчатый, свайный, плиный (монолитный), комбинированный.
  2. По заглублению: неглубокого заложения (мелкозаглубленные) и глубокого заложения.
  3. По применяемым материалам: бетонный (железобетонный), каменный (из природного или искусственного камня), кирпичный, блочный.
  4. По назначению: несущий, комбинированный и специальный (плавающий, сейсмостойкий и т.д.).

Выбор разновидности фундамента осуществляется с учетом структуры и свойств грунта, залегания подземных вод и увлажнения грунта, глубины промерзания, нагрузки от здания и климатических особенностей региона. Конструкция фундамента зависит от назначения, размеров и веса сооружения.

Особенности устройства

Как показывает мировая практика строительства, прочность фундаментной основы увеличивается за счет ширины его железобетонной подошвы.

Важным условием считается расположение подошвы ниже уровня промерзания почвенного состава.

Такая особенность соблюдается с той целью, чтобы предотвратить повреждения постройки из-за подвижек грунта.

Чтобы с максимальной точностью определить параметры фундаментного основания, учитывают определенные факторы, к которым относятся:

  • тип и состояние почвенного состава;
  • проект запланированного к строительству здания;
  • марка бетонной смеси;
  • процентное соотношение арматуры для армирования.

Строительные работы любого сооружения начинают с возведения фундамента, и очень важно осознавать всю ответственность и важность правильно проведенным расчетов. Лучше всего такую работу доверить опытным специалистам, чтобы избежать в дальнейшем неприятностей.

Допустимые отклонения от стройзадания.

Стройзадание является проектным заданием для разработки фундамента и определяет конструкцию только верхней части. Верхняя часть, поверхность для установки станка должна быть ровной, «гладкой», без уклонов и выпуклостей. Допустимые отклонения: – установочных поверхностей на фундаменте, возведенных до проектной отметки: По плоскости в любом направлении +-0,2/500 мм По высоте -5 мм По уклону 1/1000 мм Строители обычно творчески относятся к изготовлению фундамента, требования на чертежах не читают – а делают по сантиметровым строительным допускам. Внимание. Станок, установленный на полу при отсутствии фундамента без выверки по уровню и без крепления к полу, через короткое время теряет свою точность, изнашиваются направляющие и в результате станок требует ремонта. Подготовительные работы с опорами. Подготовка клиновых башмаков заключается в снятии консервационной смазки, краски и грязи с рабочих поверхностей, особенно обратить внимание на наклонные и прилегающие к станине. Смазка наклонных поверхностей консистентной смазкой. Установка клиновых башмаков в крайнее нижнее положение. Монтаж станка. Очистить нижнюю поверхность станины станка от консервации и грязи, особенно места прилегания клиновых башмаков. Установить станину станка на четыре вспомогательные опоры, расположенные по углам станины между анкерными колодцами фундамента, согласно документации так, чтобы отверстия в станине совпадали с центрами анкерных болтов в анкерных колодцах фундамента. Высота вспомогательных опор должна быть на 5 мм меньше высоты клиновых башмаков в нижнем положении. Собрать всю структуру станка (стойка, стол, шпиндельная бабка, магазин инструментов, телескопическая защита) и часть кабинета, которая не будет мешать заливке бетоном анкерных колодцев.

Установка и выверка станка. Установить стол станка по центру перемещений. Используя станочный уровень, установленный в центре стола в двух взаимно перпендикулярных положениях, выставить станок на четырёх вспомогательных опорах с точностью 0,1/1000 мм с помощью домкрата и стальных прокладок толщиной 0,5 – 1 мм. Используя анкерные болты с приваренными шайбами для поддержки клиновых башмаков, привернуть все клиновые башмаки к станине станка (см. чертёж). Площадь в плане анкерного колодца должна быть больше площади клинового башмака. Клиновые башмаки должны быть в нижнем положении. Залить анкерные колодцы водой для пропитки фундамента вокруг колодцев. Выдержать с водой 8 часов. Заполнить анкерные колодцы малоусадочным бетоном марки не ниже М300. Уплотнить вибратором и подлить вручную бетон под клиновые башмаки так, чтобы он стоял на щебне бетона и был залит по всей нижней поверхности башмака. Выдержать залитый в анкерные колодцы бетон 4 дня постоянно влажным для лучшего затвердевания. Ослабить крепёжные гайки на анкерных болтах. Поднять станок с помощью клиновых башмаков, чтобы убрать вспомогательные опоры. После 7 дней выдержки бетона, залитого в анкерные колодцы, можно выставить станину станка в горизонтальной плоскости в соответствии с сертификатом качества на данный станок с помощью домкрата, клиновых башмаков и станочного уровня 0,02/1000 мм. Верх фундамента между клиновыми башмаками заровнять цементным раствором и «зажелезнить». Окончательно затвердевший и выдержанный фундамент покрасить маслостойкой краской для предохранения от разрушающего действия масла и СОЖ. Произвести затяжку гаек на анкерных болтах динамометрическим ключом с моментом, указанном в таблице. При этом, следить за тем, чтобы уровень не изменял показаний при равномерном затягивании гаек.

Фундаменты для фрезерных станков, обрабатывающих центров, расточных и шлифовальных станков могут сильно отличаться по конфигурации и требованиям, будут рассмотрены в дальнейших статьях

Вычисление нагрузок

Перед тем как рассчитать фундамент под дом, потребуется рассчитать нагрузку. Удобнее выполнять сбор нагрузок на фундамент в табличной форме. Все нагружения делятся на два типа: постоянные и временные. Последние являются временными условно, поскольку включают в себя мебель, оборудование и т.п. Постоянные состоят из массы конструкций здания.

Расчет нагрузки на фундамент можно выполнить полностью самостоятельно с учетом точных характеристик используемых материалов. Но вполне достаточно будет воспользоваться таблицей ниже. В ней приведены средние значения, но нагрузка на фундамент от этого изменится некритично.

Конструкция Величина нагрузки, кг/м2 Коэффициент надежности
Стена из кирпича 510 мм 920 1,3
Стена из кирпича 640 мм 1150
Брусовая стена 150 мм 120 1,1
Брусовая стена 200 мм 160
Стена по деревянному каркасу с утеплением 150 мм 30-50
Перегородки из гипсокартона 80 мм 30
Перекрытие из плит ПК с цементной стяжкой 625 1,2
Перекрытие деревянное с утеплением 150 1,1
Фундамент из железобетона в кг/м3 (!) 2500 1,2 — для сборного 1,3 — для монолитного
Крыша с учетом типа покрытия
Металл 60 1,05
Керамика 120 1,2
Битумные материалы 70 1,1
Временные нагрузки
От людей и мебели 150 1,2
Снежный покров По СП “Нагрузки и воздействия” табл. 10.1 с учетом расположения участка строительства 1,4

Нагрузку на фундамент каждого типа, чтобы верно посчитать сечение, умножают на коэффициент надежности.

6.4 Требования к основаниям и фундаментам

6.4.1 Общие требования

6.4.1.1 В перечень исходных данных для проектирования основания и фундамента под резервуар должны входить данные инженерно-геологических изысканий (для районов распространения многолетнемерзлых грунтов — данные инженерно-геокриологических изысканий).

Объем и состав инженерных изысканий определяют с учетом действующих нормативных документов* и требований настоящего стандарта.

6.4.1.2 Материалы инженерно-геологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:

— физико-механические характеристики грунтов (плотность грунтов ρ, удельное сцепление фунтов с, угол внутреннего трения φ, модуль деформации E, коэффициент пористости е, показатель текучести lL и др.);

— расчетный уровень грунтовых вод с учетом прогноза изменения гидрогеологического режима грунтовых вод на период срока службы без учета их объемов.

В районах распространения многолетнемерзлых фунтов изыскания должны обеспечить получение сведений о составе, состоянии и свойствах мерзлых и оттаивающих фунтов, криогенных процессов и образованиях, включая прогнозы изменения инженерно-геокриологических условий проектируемых резервуаров с геологической средой.

6.4.1.3 Число геологических выработок (скважин) определяется площадью резервуара и должно быть не менее четырех (одна — в центре и три — в районе стенки, т. е. 0,9-1,2 радиуса резервуара). В дополнение к скважинам допускается исследование грунтов методом статического зондирования.

При проведении инженерных изысканий следует предусматривать исследование грунтов на глубину активной зоны (ориентировочно 0,4-0,7 диаметра резервуара) в центральной части резервуара и не менее 0.7 активной зоны — в области стенки резервуара. При свайных фундаментах на глубину активной зоны ниже подошвы условного фундамента (острия свай).

В районах с повышенной сейсмической активностью необходимо предусмотреть проведение геофизических исследований грунтов основания резервуаров и микросейсморайонирования.

6.4.1.4 При разработке проектов оснований и фундаментов следует руководствоваться положениями действующих нормативных документов* и требованиями настоящего стандарта.

6.4.2 Основные требования к проектным решениям оснований

6.4.2.1 Грунты, деформационные характеристики которых обеспечивают допустимые осадки резервуаров. следует использовать в естественном состоянии как основание для резервуара.

6.4.2.2 Для грунтов, деформационные характеристики которых не обеспечивают допустимые осадки резервуаров, предусматривают инженерные мероприятия по их упрочнению либо устройство свайного фундамента.

6.4.2.3 Для просадочных грунтов предусматривают устранение просадочных свойств в пределах всей просадочной толщи или устройство свайных фундаментов, полностью прорезающих просадочную толщу.

6.4.2.4 При проектировании оснований резервуаров, возводимых на набухающих грунтах, в случае если расчетные деформации основания превышают предельные, предусматривают проведение следующих мероприятий:

— полная или частичная замена слоя набухающего грунта ненабухающим;

— применение компенсирующих песчаных подушек;

— устройство свайных фундаментов.

6.4.2.5 При проектировании оснований резервуаров, возводимых на водонасыщенных пылеватоглинистых, биогенных грунтах и илах, в случае если расчетные деформации основания превышают допустимые, должно предусматриваться проведение следующих мероприятий:

— устройство свайных фундаментов;

— для биогенных грунтов и илов — полная или частичная замена их песком, щебнем, гравием и т. д.;

— предпостроечное уплотнение грунтов временной пригрузкой основания (допустимо проведение уплотнения грунтов временной нагрузкой в период гидроиспытания резервуаров по специальной программе).

6.4.2.6 При проектировании оснований резервуаров, возводимых на подрабатываемых территориях. в случае если расчетные деформации основания превышают допустимые, должно предусматриваться проведение следующих мероприятий;

— устройство сплошной железобетонной плиты со швом скольжения между днищем резервуара и верхом плиты;

— применение гибких соединений (компенсационных систем) в узлах подключения трубопроводов;

— устройство приспособлений для выравнивания резервуаров.

6.4.2.7 При проектировании оснований резервуаров, возводимых на закарстованных территориях, предусматривают проведение следующих мероприятий, исключающих возможность образования карстовых деформаций:

— заполнение карстовых полостей;

— прорезка карстовых пород глубокими фундаментами;

— закрепление закарстованных пород и (или) вышележащих грунтов.

Размещение резервуаров в зонах активных карстовых процессов не допускается.

6.4.2.8 При применении свайных фундаментов концы свай заглубляют в малосжимаемые грунты и обеспечивают требования к предельным деформациям резервуаров.

Свайное основание может быть как под всей площадью резервуара — «свайное поле», так и «кольцевым» — под стенкой резервуара.

6.4.2.9 Если применение указанных в 6.4.27, 6.4.2.8 мероприятий не исключает возможность превышения предельных деформаций основания (или в случае нецелесообразности их применения), предусматривают специальные устройства (компенсаторы) в узлах подключения трубопроводов, обеспечивающие прочность и надежность узлов при осадках резервуаров, а также устройство для выравнивания резервуаров.

6.4.2.10 При строительстве в районах распространения многолетнемерзлых грунтов при использовании грунтов основания по первому принципу (с сохранением фунтов в мерзлом состоянии в период строительства и эксплуатации) предусматривают их защиту от воздействия положительных температур хранимого в резервуарах продукта. Это достигается устройством проветриваемого подполья типа «Высокий ростверк» или применением теплоизоляционных материалов в сочетании с принудительным охлаждением фунтов — термостабилизацией.

6.4.2.11 Грунтовые подушки следует выполнять из послойно уплотненного при оптимальной влажности фунта, модуль деформации которого после уплотнения должен быть не менее 15 МПа, коэффициент уплотнения — не менее 0,90.

Уклон откоса фунтовой подушки следует выполнять не более 1:1,5.

Ширина горизонтальной части поверхности подушки за пределами окрайки, м, должна быть:

0,7 — для резервуаров объемом не более 1000 м 3 ;

1,0 — для резервуаров объемом более 1000 м 3 и, независимо от объема, для площадок строительства с расчетной сейсмичностью 7 баллов и более.

Поверхность подушки за пределами периметра резервуара (горизонтальная и наклонная части) должна быть защищена отмосткой.

6.4.3 Основные требования к проектным решениям фундаментов

6.4.3.1 В качестве фундамента резервуара может быть использована грунтовая подушка (с железобетонным кольцом под стенкой и без него) либо железобетонная плита. Рекомендуемые конструктивные решения фундаментов резервуаров показаны на рисунках 24-26.

6.4.3.2 Для резервуаров объемом 2000-3000 м 3 под стенкой резервуара устанавливают железобетонное фундаментное кольцо шириной не менее 0,8 м и не менее 1,0 м — для резервуаров объемом более 3000 м 3 . Толщину кольца принимают не менее 0,3 м.

Рисунок 24 — Грунтовая подушка

Рисунок 25 — Кольцевой железобетонный фундамент

Рисунок 26 — Сплошная железобетонная плита

6.4.3.3 Для площадок строительства с расчетной сейсмичностью 7 баллов и более фундаментное кольцо устраивают для всех резервуаров, независимо от объема, шириной не менее 1,5 м, а толщину кольца принимают не менее 0,4 м. Фундаментное кольцо рассчитывают на основное, а для площадок строительства с сейсмичностью 7 баллов и более — также на особое сочетание нагрузок.

6.4.3.4 Под днищем резервуара должен быть предусмотрен гидроизолирующий слой, выполненный из асфальтобетона по ГОСТ 9128 или песчаного грунта, пропитанного нефтяными вяжущими добавками. Применяемые песок и битум не должны содержать коррозионно-активных агентов. Толщина гидроизолирующего слоя под центральной частью днища — не менее 50 мм, под окрайкой днища — не менее 20 мм.

6.4.3.5 При устройстве фундамента резервуара должно быть предусмотрено проведение мероприятий по отводу грунтовых вод и атмосферных осадков из-под днища резервуара.

6.4.4 Балочные конструкции фундаментов

Для оперативного обнаружения протечек продукта через повреждения днища (коррозионные, механические) допускается применять конструкции с опиранием днища на систему из стальных или бетонных опорных балок, т. е. днище может не иметь сплошного основания.

Расположение опорных балок должно обеспечивать вентиляцию пространства под днищем и не должно затруднять визуальное наблюдение за появлением протечек продукта.

Конструктивные схемы расположения опорных балок показаны на рисунке 27. Согласно этим вариантам стенка резервуара не имеет сплошной кольцевой опоры, поэтому в проекте КМ должны быть рассмотрены вопросы местной устойчивости стенки между опорными балками. Данные варианты опирания днищ рекомендуются для резервуаров, имеющих толщину нижнего пояса не более 14 мм и эксплуатируемых при температуре не более 100°С.

Толщину листов днища при опирании на балки и расстояние между балками следует определять расчетом из условий прочности и деформативности согласно требованиям действующих нормативных документов*.

Днища, не имеющие сплошного основания, должны быть сварены двусторонней автоматической сваркой. Для монтажных соединений днища, располагаемых на опорных балках, допускаются односторонние нахлесточные соединения или стыковые соединения на остающейся подкладке. В качестве подкладки допускается использовать верхний пояс опорной балки.

6.4.5 Нагрузки на основание и фундамент

6.4.5.1 Статические нагрузки на центральную часть днища резервуара определяют, исходя из максимального проектного уровня налива и плотности хранимою продукта или воды при гидроиспытаниях.

Вертикальная и горизонтальная составляющие N, NR погонной нагрузки на фундаментное кольцо под стенкой резервуара определяются гидростатическим давлением на уровне днища, полным весом стенки и крыши резервуара, включая оборудование и теплоизоляцию, а также снеговой нагрузкой, избыточным давлением и разряжением (вакуумом) в газовом пространстве резервуара. При расчете нагрузок на фундамент необходимо учитывать дополнительное к N вертикальное погонное усилие QR, возникающее вследствие отрыва части окраечного кольца от основания, а также горизонтальное погонное усилие NR = F, где F — Qy — kТ (N + QR), если F>0, и NR — Qy, если F≤0. Здесь Qy — погонное перерезывающее усилие в уторном узле, kТ — коэффициент трения днища по основанию под стенкой резервуара.

6.4.5.2 При сейсмическом воздействии погонное усилие на фундаментное кольцо увеличивается за счет периодической составляющей опрокидывающего момента на корпус. Амплитуду и частоту нагрузки от сейсмического воздействия определяют при выполнении прочностного сейсмического расчета корпуса резервуара.

* На территории Российской Федерации действует СП 28.13330.2012 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии».