Минимальный процент армирования железобетонных конструкций

Какой расход арматуры на 1 м3 бетона

Для правильного расчета расхода арматуры на 1 м 3 бетона необходимо соблюдать строительные нормы и требования по армированию железобетонных конструкций. Так как, для конструкций разного типа, процент содержания стальных стержней в железобетоне может существенно отличается.

Какие показатели влияют на расчет расхода

При расчете расхода арматуры для армирования железобетонных конструкций следует учесть:

  • Вид и тип строения. Нормы армирования для каждой конструкции свои, они регламентируются, ГОСТ и СНиП.
  • Марку бетона. Чем выше марка, тем больше у бетона показатель сопротивления сжатию и растяжению, данные характеристики учитываются при вычислениях.
  • Размер и вес строения. Чем больше масса постройки, следовательно, тем больше процент содержания стали в бетоне.
  • Класс арматуры. Показатели расчетного сопротивления на растяжение и сжатие у стержней более высокого класса выше.

Все вышеперечисленные характеристики учитываются при расчетах количества арматуры требуемого для армирования возводимой конструкции. От их величины зависит и объем требуемого материала на 1 м 3 бетона. Так как эти показатели для каждой конструкции свои, то и расход для них будет разный.

Как рассчитывается расход арматуры на куб бетона

Согласно СП 52-101-2003 конструкцию можно назвать железобетонной, если площадь сечения продольных стальных стержней равна минимум 0,1 %, от площади сечения бетона. Максимальный процент содержания стальных стержней в бетоне равен 5, в местах стыковки, например колонн, этот показатель может доходить до 10. Рекомендуемый диапазон, это 0,5-3 % арматуры, от площади сечения бетона.

Исходя из конструктивных требований СП 52-101-2003, норма расхода арматуры для армирования железобетонных конструкций, находится в пределах от 20 до 430 кг на 1 м 3 бетона.

Таблица расхода арматуры

В данной таблице, рассчитан вес арматуры, необходимый для армирования железобетонных конструкций, в зависимости её количества в процентах от площади сечения бетона.

Содержания арматуры, % Масса арматуры на 1 м 3 бетона, кг
0.1 7.85
0.5 39.25
1 78.5
1.5 117.75
2 157
2.5 196.25
3 235.5
3.5 274.75
4 314
4.5 353.25
5 392.5

Примеры расчета расхода арматуры

Как уже было сказано выше, количество стержней требуемых для армирования зависит от типа конструкции, ниже приведены примеры как проводить расчёты для них.

Ленточный фундамент

Рассчитаем количество арматуры на 1 м 3 бетона, необходимое для армирования ленточного фундамента – высота 1,2 м, ширина 0,4 м. Для продольного армирования используем стальные стержни диаметром 12 мм – 14 шт., для поперечного хомуты из прутов 8 мм – шаг 30 см, а также соединительные стержни с шагом 60 см.

Порядок выполнения расчета расхода по схеме приведенной выше:

  1. Считаем площадь сечения бетона: 120*40=4800 см 2 .
  2. Площадь сечения продольной арматуры: 14*1,131=15,834 см 2 .
  3. Находим процент содержания продольных стержней в бетоне: 15,834/4800*100=0,329875%, округляем 0,33 %.
  4. С помощью таблицы расхода переводим проценты в кг, для этого: 0,33/0,1*7,85=25,905 кг.
  5. Для изготовления одного хомута необходимо 3 м прута толщиной 8 мм (вес 1 метра 0,395 кг), всего на 1 м 3 фундамента уйдет 7 хомутов, а это: 7*0,395= 2,765 кг.
  6. Также понадобятся 4 соединительных стержня длиной 50 см, и диаметром 8мм, всего: 4*0,5*0,395=0,79 кг.
  7. Получаем на 1 м 3 бетона ленточного фундамента при таком армировании, всего уйдет: 25,905+2,765+0,79=29,46 кг арматуры.

Так, рассчитав требуемый объем бетона и количество стержней на 1 м 3 , можно узнать, сколько тонн стали необходимо для армирования всего фундамента. Но также следует учесть количество и размер нахлестов арматуры, и подсчитать количество дополнительных элементов по усилению углов и других элементов.

Монолитная плита перекрытия

Рассчитаем на примере армирования плиты перекрытия толщиной 20 см, так как это самый распространённый размер. Шаг армирующей сетки 200 на 200 мм диаметр стержня 10 мм, усиления 14 мм – шаг 200 мм.

Порядок расчета расхода на 1 м 3 перекрытия по схеме:

  1. На 1 м 2 плиты уходит 20 м арматуры для вязки верхнего и нижнего слоя сетки.
  2. 1 м 3 бетона занимает площадь 5 м 2 , следовательно: 5*20=100 метров – расход стержня для вязки сетки.
  3. Вес метра арматуры 10 мм – 0,617 кг. Получаем, 100*0,617=61,7 кг, расход продольных стержней для устройства сетки.
  4. На дополнительные усиления, понадобится около 50 метров стержня диаметром 14 мм, всего: 50*1,21=60,5 кг.
  5. Дополнительные элементы плиты (пространственные каркасы, «П» образные элементы), необходимо около 20 м стальных прутов 10 мм, всего: 20*0,617=12,34 кг.
  6. Всего расход: 61,7+60,5+12,34= 134,54 кг арматуры на 1 м 3 бетона монолитной плиты перекрытия.

Таким образом, можно произвести расчеты для перекрытий различных конструкций. Но при этом следует ещё учесть расход на стыки, усиления в зоне продавливания, и другие дополнительные элементы, в зависимости от формы и особенностей строения.

Железобетонная колонна

Рассчитаем расход для армирования колонны 300 на 300 мм. Продольная арматура класса А500С диаметром 16 мм – 4 шт, поперечная А240 – 8 мм. Порядок расчета:

  1. Считаем размер площади сечения колонны: 30*30=900 см 2 .
  2. Площадь сечения арматуры равна: 4*2,01=8,04 см 2 .
  3. Рассчитываем процент содержания продольных прутов в бетоне: 8,04/900*100= 0,893 %.
  4. Переводим проценты в кг, для этого: 0,893/0,1*7,85= 70,1 кг.
  5. При таком сечении 1 м 3 бетона в длину это 11 метров колонны.
  6. На 11 метр колонны при шаге 25 см уйдет около 45 хомутов.
  7. На 1 хомут уходит 1 метр стержня диаметром 8 мм весом 0,395 кг, значит всего на куб: 45*0,395=17,775 кг.
  8. Всего на куб бетона колонны уйдет, 70,1+17,775=87,875 кг арматуры.

Все расчеты по расходу стали являются теоретическими, к каждому случаю следует подходить индивидуально, учитывать все действующие нагрузки на конструкцию, так как от этого зависит минимальный процент армирования, а от него, то, сколько арматуры уйдет на 1 м 3 бетона. Если остались вопросы, задавайте в комментариях, будем рады помочь.

Какой минимальный процент армирования железобетонных конструкций?

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

  • масса металлического каркаса делится на вес бетонного монолита;
  • полученное в результате деления значение умножается на 100.

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

  • при увеличении слоя бетона показатель армирования снижается;
  • при использовании арматуры большого диаметра коэффициент возрастает.
Читайте также  Утилизация бетонных отходов

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

  • минимальное, составляющее 0,05%. При удельном весе арматуры ниже указанного значения эксплуатация бетонных конструкций не допускается;
  • максимальное, равное 5%. Превышение указанного показателя ведет к ухудшению эксплуатационных показателей железобетонного массива.

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

  • при величине коэффициента 0,05 конструкция способна воспринимать растяжение и сжатие при воздействии нагрузки за пределами рабочего сечения;
  • минимальная степень армирования возрастает до 0,06% при воздействии нагрузок на слой бетона, расположенный между элементами арматурного каркаса;
  • для строительных конструкций, подверженных внецентренному сжатию, минимальная концентрация стальной арматуры достигает 0,25%.

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Заключение

Усиление бетонных конструкций с помощью арматурных каркасов позволяет повысить их долговечность и увеличить прочностные свойства. На расчетном этапе важно правильно определить показатель армирования. При выполнении работ необходимо соблюдать требования строительных норм и правил, а также руководствоваться положениями действующих стандартов.

Процент арматуры в железобетоне — каким должно быть оптимальное значение?

С целью выполнения армированием своего прямого предназначения, необходим специальный расчет усиления бетона, что соответствует минимальному и максимальному проценту. Эта величина играет важную роль в проектных расчетах. Ее малый показатель не дает права считать изделие усиленным до ЖБИ, а больший приведет к существенному снижению технических характеристик ж/б материала.

  1. Степень армирования
  2. Особенности расчетов
  3. Значение армирования
  4. Минимальный процент
  5. Максимальный коэффициент арматуры
  6. Сохранение прочности
  7. Защитный слой бетона

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.

Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Особенности расчетов

В железобетоне используют только горячекатаную сталь высокого класса, так как она устойчива к коррозии и крепка. Чтобы сваренный металлический каркас, расположенный в бетоне, сделал свое дело, необходим точный расчет, позволяющий уточнить, сколько и какие материалы необходимы. Важность расчетов сложно переоценить. Они выполняются с привлечением технических формул, где учтены сопротивление используемых стройматериалов, соотношение предельно допустимых нагрузок к закладываемым и другие параметры. А также стандартные вычисления предусматривают тип фундамента, наличие дополнительных конструкционных элементов, марку бетона, несущие нагрузки. По окончании математической части все данные наносят на чертеж, где представлена схема армирования. Из проекта исполнители знают, сколько и какого вида стальных стержней нужно взять. А также стоит учесть в каком порядке их расположить и связать.

Значение армирования

Минимальный процент

Наименьшая степень усиления бетона арматурой, что расположена продольно, вычисляется соответственно площади сечения железобетонного объекта и составляет 0,05%. Меньший показатель говорит лишь о локальном укреплении бетонного раствора. Такое сооружение ненадежное и опасное, поскольку возможно его разрушение. Минимальный процент армирования зависит от типа и локализации действующих нагрузок (сжатие, растяжение) вне пределов рабочего бетонного сечения, между прутьями каркаса, и колеблется в пределах от 0,5 до 0,25% для каждой конкретной конструкции.

Максимальный коэффициент арматуры

Предельно допустимая доля стали для ж/б конструкций составляет 4% (в колоннах 5%). Тип стальных элементов и марка бетона влияния не имеют. Превышение максимальной величины приводит к снижению эксплуатационных характеристик изделия и возрастанию его веса, что усилит нагрузку вышерасположенных составляющих на нижние. Укрепляя бетон, важно обеспечить плотное обволакивание всей металлической решетки раствором без образования воздушных карманов.

Сохранение прочности

Бетон создает защиту стали от влияния факторов внешней среды (влаги, химических веществ), поэтому металл должен быть полностью укрыт раствором. Любые манипуляции с железобетонным объектом типа алмазного бурения, резки, отделения частей, образования сквозных тоннелей в стене приводят к значительному уменьшению потенциала прочности.

Все работы, нарушающие монолитность железобетонной конструкции, должны проводиться с учетом схемы расположения и пространственной структуры каркаса.

Защитный слой бетона

В таблице представлена зависимость толщины бетонного слоя от типа строительного элемента:

Читайте также  Легкобетонные блоки технические характеристики
Наименование стройматериала Ширина объекта, см Слой бетона, см
Несущая стена Более 10 1,5
Стена Менее 10 1
Ребро 25 2
Балка Менее 25 1,5
Колонна 3
Фундаментная балка

Особое внимание следует уделить фундаментам монолитной структуры. Наличие цементной подушки оправдывает слой бетонной защиты в 3,5 см, без нее — 7 см. Сборный фундамент потребует слоя шириной 3 сантиметра. Чем больше толщина искусственного камня, тем прочнее арматуру рекомендуют использовать. Технические выкладки взяты из свода требований к бетонным и железобетонным конструкциям СНиП 2.03.01—84.

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Армирование бетона

Прочность на излом, повышенная надежность являются основными характеристиками, которым наделяется железобетонная конструкция при армировании. Стальной каркас многократно усиливает выносливость материала, расширяя область его применения. Горячекатаная сталь используется для армирования в железобетоне. Она наделена максимальной стойкостью к негативным воздействиям и коррозии.

Сваренный скелет из арматуры размещается внутри бетона. Однако недостаточно просто поместить его туда. Чтобы армирование выполняло свое назначение, требуются специальный расчет усиления бетона, соответствующий минимальному и максимальному проценту.

Минимальный армирующий процент

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

  1. Усиление прутьями будет соответствовать 0,05 процентам от площади разреза изделия из бетона. Это актуально для объектов с внецентренно изгибаемыми и растянутыми нагрузками, когда оказывается продольное давление за пределами действительной высоты.
  2. Армирование прутьями равно не менее 0,06 процентам, когда давление во внецентренно растянутых изделиях осуществляется на пространство между армирующими прутьями.
  3. Упрочнение будет составлять 0,1—0,25 процента, если железобетонные материалы усиливаются во внецентренно сжатых частях, то есть между арматурами.

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Защитный слой бетона

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

Заключение

Индивидуальное строительство немыслимо без использования бетонных растворов. Для повышения надежности и прочности возводимых конструкций армирование является важным условием.

При наличии базовых знаний и опытных помощников усиление бетонных объектов не составит труда. В этом деле важно выполнять требования и следовать правилам расположения арматуры. Только так можно получить гарантированно долговечные и надежные железобетонные конструкции.

Определение эффективных параметров армирования железобетонных конструкций

Леонид Скорук
К.т.н., доцент, старший научный сотрудник НП ООО «СКАД Софт» (г. Киев).

В настоящее время монолитный железобетон (обеспечивающий произвольную форму изделий, свободу планировочных решений и многое другое) получил большее распространение и применение по сравнению со сборным железобетоном (ограниченная номенклатура сборных изделий и пролет). В то же время сборные изделия прошли проверку временем по надежности и долговечности, а их армирование является оптимальным с точки зрения некоего условного соотношения «материал/стоимость конструкции». В монолитных же конструкциях величина арматуры в большинстве случаев является переменной и зависит от многих исходных факторов: геологии, типа фундамента, нагрузки, геометрии здания и т.д.

Это нужно понимать при проектировании монолитных конструкций и не идти на поводу у заказчиков, далеких от инженерного дела и желающих в первую очередь оптимизировать свои расходы на строительство.

Как известно, чтобы обеспечить необходимую прочность и устойчивость здания или сооружения, следует провести соответствующие расчеты и подобрать необходимое количество арматуры для восприятия действующих нагрузок. При этом в конструкциях должны быть соблюдены требования как по 1­й (прочность, устойчивость), так и по 2­й группе (прогибы, ширина раскрытия трещин) предельных состояний.

В практике проектирования сформировался определенный условный параметр, по которому можно оценить затраты металла в конструкции: содержание арматуры в бетоне (как правило, берут вес всей арматуры в конструкции — продольной и поперечной — и делят на объем ее бетона, получая параметр в килограммах на кубический метр (кг/м3)).

При этом в действующих строительных нормах [1­3] такой параметр напрочь отсутствует и никоим образом не регламентируется. В нормативах указывается только необходимость обеспечить в сечении элемента минимальный процент арматуры от площади бетона (min 0,05­0,25%) и опосредованно рекомендован оптимальный процент армирования в конструкциях на уровне примерно 3% (это опять же отклик оптимизации для сборных конструкций).

До какой­то степени величина содержания арматуры в конструкциях отражена в некоторых сметных нормативах [4, 5]. Там величина арматуры в бетоне находится в пределах 190­200 кг/м3 — опять же без привязки к различным изменчивым исходным данным.

Читайте также  Нарезка швов в бетоне технология

Для оценки величины содержания арматуры в бетоне монолитных конструкций проведем небольшой численный эксперимент. Возьмем для примера фрагмент плиты размерами в плане 1,0×1,0 м с двумя арматурными сетками у каждой грани, имеющими шаг стержней 100×100 мм, и проследим изменение содержания арматуры в бетоне в зависимости от изменения некоторых исходных параметров: толщины плиты и диаметра арматуры (рис. 1).

Рис. 1. Содержание арматуры в бетоне (кг/м3) для монолитного фрагмента площадью 1 м 2 при различных исходных данных: а — при разных диаметрах арматуры; б — при разных толщинах плит

Рис. 2. Интерфейс программы SCAD++. Постпроцессор «Железобетон», режим «Экспертиза железобетона»

Как видно из приведенных данных, даже при «идеальных» условиях проектирования (отсутствие поперечной арматуры, дополнительного армирования, различных элементов локального усиления и т.п.) величина содержания арматуры, например, для элемента толщиной 200 мм с размещенной в нем арматурой из двух сеток диаметром 10 мм составляет 123,2 кг/м 3 . При наличии же различных дополнительных факторов суммарное содержание арматуры в бетоне будет резко расти.

Таблица 1. Факторы, которые влияют на расход бетона и арматуры

Фактор

Следствие

Инженерно­геологические условия строительной площадки

Тип фундамента (свайный, плитный, ленточный)

Шаг сетки несущих вертикальных элементов

Пролет плит, их толщина (жесткость)

Размеры сечения колонн/пилонов/стен

Удельный вес арматуры в бетоне

Класс бетона и арматуры

Расход арматуры в сечении

Довольно трудоемкую и рутинную работу по определению содержания арматуры в бетоне для некоторых отдельных элементов и всего сооружения в целом на начальном этапе проектирования (еще до начала разработки чертежей стадии КЖ/КЖИ) с довольно высокой точностью можно выполнить в программе SCAD++. В режиме «Экспертиза железобетона» постпроцессора «Железобетон», используя операцию Вес заданной арматуры (рис. 2), можно в реальном времени не только определить расход арматуры, но заодно (что очень важно) и проверить, насколько заданная арматура удовлетворяет необходимым критериям прочности конструкции согласно выбранным нормам проектирования.

При этом нужно помнить, что программа считает расход:

  • арматуры без учета ее нахлеста и загибов, которые могут добавлять в реальный расход арматуры около 15­20%;
  • бетона с учетом пересечения элементов, поскольку стыковка элементов происходит по оси стержневых и срединной плоскости плитных элементов (увеличение около 5­10%).

Суммарный расход арматуры и бетона в любом здании зависит от многих факторов, которые можно в некоторой степени скорректировать на начальной стадии расчета и проектирования. Основные факторы, которые влияют на расход бетона и арматуры в конструкциях и зданиях, приведены в табл. 1.

Таблица 2. Содержание арматуры в бетоне для разных типов зданий

Тип здания

Элемент здания

Расход, кг/м3

а) 22­этажное здание на сваях
(шаг колонн/пилонов 6,0 м)